Batch Versus Flow Lithiation-Substitution of 1,3,4-Oxadiazoles: Exploitation of Unstable Intermediates Using Flow Chemistry
- PMID: 31361052
- DOI: 10.1002/chem.201902917
Batch Versus Flow Lithiation-Substitution of 1,3,4-Oxadiazoles: Exploitation of Unstable Intermediates Using Flow Chemistry
Abstract
1,3,4-Oxadiazoles are a common motif in pharmaceutical chemistry, but few convenient methods for their modification exist. A fast, convenient, high yielding and general α-substitution of 1,3,4-oxadiazoles has been developed using a metalation-electrophilic trapping protocol both in batch and under continuous flow conditions in contradiction to previous reports which suggest that α-metalation of this ring system results in ring fragmentation. In batch, lithiation is accomplished at an industrially convenient temperature, -30 °C, with subsequent trapping giving isolated yields of up to 91 %. Under continuous flow conditions, metalation is carried out at room temperature, and subsequent in flow electrophilic trapping gave up to quantitative isolated yields. Notably, lithiation in batch at room temperature results only in ring fragmentation and we propose that the superior mixing in flow allows interception and exploitation of an unstable intermediate before decomposition can occur.
Keywords: alkylation; flow chemistry; heterocycles; lithiation; synthetic methods.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Lithiation Substitution of Unprotected Benzyltetrazoles.Org Lett. 2019 Sep 6;21(17):7069-7072. doi: 10.1021/acs.orglett.9b02633. Epub 2019 Aug 26. Org Lett. 2019. PMID: 31449424
-
Practical continuous-flow trapping metalations of functionalized arenes and heteroarenes using TMPLi in the presence of Mg, Zn, Cu, or La halides.Angew Chem Int Ed Engl. 2015 Oct 12;54(42):12501-5. doi: 10.1002/anie.201502393. Epub 2015 May 14. Angew Chem Int Ed Engl. 2015. PMID: 25973885
-
Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C3 ) Functionalization of Highly Strained 1-Azabicyclo[1.1.0]butanes.Angew Chem Int Ed Engl. 2021 Mar 15;60(12):6395-6399. doi: 10.1002/anie.202014881. Epub 2021 Feb 15. Angew Chem Int Ed Engl. 2021. PMID: 33325599
-
Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.Angew Chem Int Ed Engl. 2015 Jun 1;54(23):6688-728. doi: 10.1002/anie.201409318. Epub 2015 May 18. Angew Chem Int Ed Engl. 2015. PMID: 25989203 Review.
-
High Yielding Continuous-Flow Synthesis of Norketamine.Org Process Res Dev. 2022 Apr 15;26(4):1145-1151. doi: 10.1021/acs.oprd.1c00407. Epub 2022 Mar 26. Org Process Res Dev. 2022. PMID: 35573033 Free PMC article. Review.
Cited by
-
An Electrosynthesis of 1,3,4-Oxadiazoles from N-Acyl Hydrazones.Chemistry. 2024 Dec 10;30(69):e202403128. doi: 10.1002/chem.202403128. Epub 2024 Oct 30. Chemistry. 2024. PMID: 39291449 Free PMC article.
-
Preparation of Functionalized Aryl, Heteroaryl, and Benzylic Potassium Organometallics Using Potassium Diisopropylamide in Continuous Flow.Angew Chem Int Ed Engl. 2020 Jul 20;59(30):12321-12325. doi: 10.1002/anie.202003392. Epub 2020 Apr 30. Angew Chem Int Ed Engl. 2020. PMID: 32216119 Free PMC article.
-
(2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow.Angew Chem Int Ed Engl. 2021 Jun 21;60(26):14296-14301. doi: 10.1002/anie.202103031. Epub 2021 May 3. Angew Chem Int Ed Engl. 2021. PMID: 33826212 Free PMC article.
-
Continuous Flow Sodiation of Substituted Acrylonitriles, Alkenyl Sulfides and Acrylates.Angew Chem Int Ed Engl. 2021 Jan 11;60(2):731-735. doi: 10.1002/anie.202012085. Epub 2020 Nov 3. Angew Chem Int Ed Engl. 2021. PMID: 33026681 Free PMC article.
-
Flow synthesis of oxadiazoles coupled with sequential in-line extraction and chromatography.Beilstein J Org Chem. 2022 Feb 25;18:232-239. doi: 10.3762/bjoc.18.27. eCollection 2022. Beilstein J Org Chem. 2022. PMID: 35280956 Free PMC article.
References
-
- J. Boström, A. Hogner, A. Llinàs, E. Wellner, A. T. Plowright, J. Med. Chem. 2012, 55, 1817-1830.
-
- G. A. Patani, E. J. LaVoie, Chem. Rev. 1996, 96, 3147-3176.
-
- M. D. McBriar, J. W. Clader, I. Chu, R. A. Del Vecchio, L. Favreau, W. J. Greenlee, L. A. Hyde, A. A. Nomeir, E. M. Parker, D. A. Pissarnitski, L. Song, L. Zhang, Z. Zhao, Bioorg. Med. Chem. Lett. 2008, 18, 215-219.
-
- J. S. Warmus, C. Flamme, L. Y. Zhang, S. Barrett, A. Bridges, H. Chen, R. Gowan, M. Kaufman, J. Sebolt-Leopold, W. Leopold, R. Merriman, J. Ohren, A. Pavlovsky, S. Przybranowski, H. Tecle, H. Valik, C. Whitehead, E. Zhang, Bioorg. Med. Chem. Lett. 2008, 18, 6171-6174.
-
- None
Grants and funding
LinkOut - more resources
Full Text Sources
Medical