The novel disulfide reductase bis-gamma-glutamylcystine reductase and dihydrolipoamide dehydrogenase from Halobacterium halobium: purification by immobilized-metal-ion affinity chromatography and properties of the enzymes
- PMID: 3136140
- PMCID: PMC211315
- DOI: 10.1128/jb.170.8.3459-3467.1988
The novel disulfide reductase bis-gamma-glutamylcystine reductase and dihydrolipoamide dehydrogenase from Halobacterium halobium: purification by immobilized-metal-ion affinity chromatography and properties of the enzymes
Abstract
An NADPH-specific disulfide reductase that is active with bis-gamma-glutamylcystine has been purified 1,900-fold from Halobacterium halobium to yield a homogeneous preparation of the enzyme. Purification of this novel reductase, designated bis-gamma-glutamylcystine reductase (GCR), and purification of halobacterial dihydrolipoamide dehydrogenase (DLD) were accomplished with the aid of immobilized-metal-ion affinity chromatography in high-salt buffers. Chromatography of GCR on immobilized Cu2+ resin in buffer containing 1.23 M (NH4)2SO4 and on immobilized Ni2+ resin in buffer containing 4.0 M NaCl together effected a 120-fold increase in purity. Native GCR was found to be a dimeric flavoprotein of Mr 122,000 and to be more stable to heat when in buffer of very high ionic strength. DLD was chromatographed on columns of immobilized Cu2+ resin in buffer containing NaCl and in buffer containing (NH4)2SO4, the elution of DLD differing markedly in the two buffers. Purified DLD was found to be a heat-stable, dimeric flavoprotein of Mr 120,000 and to be very specific for NAD. The utility of immobilized-metal-ion affinity chromatography for the purification of halobacterial enzymes and the likely cellular function of GCR are discussed.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous