Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug 15;263(23):11075-9.

Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin

Affiliations
  • PMID: 3136153
Free article

Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin

T K Ghosh et al. J Biol Chem. .
Free article

Abstract

The action of inositol 1,4,5-trisphosphate (InsP3) in releasing intracellular Ca2+ is shown to be competitively and potently antagonized by the glycosaminoglycan, heparin. Using either permeabilized cells of the DDT1MF-2 smooth muscle cell line, or an isolated microsomal membrane fraction derived from intact cells, heparin (4-6 kDa) at 10 micrograms/ml was observed to completely block the action of InsP3 in releasing Ca2+ accumulated via the ATP-dependent Ca2+ pump. In permeabilized cells, heparin had no effect on Ca2+ pump activity or on passive Ca2+ fluxes contributing to equilibrium Ca2+ accumulation. Heparin up to 100 micrograms/ml had no effect on the GTP-activated Ca2+ translocation process previously characterized in this cell line. Half-maximal inhibition of Ca2+ release activated by 10 microM InsP3 occurred with heparin at approximately 0.6 and 0.2 microgram/ml in permeabilized cells and isolated microsomes, respectively. Using microsomes, InsP3 dose-response curves in the presence and absence of 0.2 microgram/ml heparin (approximately 40 nM) revealed a 10-fold increase in apparent Km for InsP3 (0.31 microM in the absence of heparin) with no change in Vmax, indicating a competitive action of heparin. The results revealed a very high apparent affinity of heparin for the InsP3 active site, with a calculated Ki value of 2.7 nM. Heparin was shown to rapidly (within 20 s) reverse prior full activation of InsP3-mediated Ca2+ release returning the Ca2+ equilibrium back to that observed without InsP3. This reversal occurs even after prolonged (6 min) InsP3 activation. These results indicate a specific, high affinity, and competitive antagonism of the InsP3 active site by heparin. The rapidly induced reversal of InsP3-activated Ca2+ release by heparin strongly suggests that InsP3 directly activates a channel which remains open only while InsP3 is associated and closes immediately upon InsP3 dissociation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources