Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Oct;33(10):2846-2859.
doi: 10.1519/JSC.0000000000003291.

Scientific Basis for Eccentric Quasi-Isometric Resistance Training: A Narrative Review

Affiliations
Review

Scientific Basis for Eccentric Quasi-Isometric Resistance Training: A Narrative Review

Dustin J Oranchuk et al. J Strength Cond Res. 2019 Oct.

Abstract

Oranchuk, DJ, Storey, AG, Nelson, AR, and Cronin, JB. The scientific basis for eccentric quasi-isometric resistance training: A narrative review. J Strength Cond Res 33(10): 2846-2859, 2019-Eccentric quasi-isometric (EQI) resistance training involves holding a submaximal, yielding isometric contraction until fatigue causes muscle lengthening and then maximally resisting through a range of motion. Practitioners contend that EQI contractions are a powerful tool for the development of several physical qualities important to health and sports performance. In addition, several sports involve regular quasi-isometric contractions for optimal performance. Therefore, the primary objective of this review was to synthesize and critically analyze relevant biological, physiological, and biomechanical research and develop a rationale for the value of EQI training. In addition, this review offers potential practical applications and highlights future areas of research. Although there is a paucity of research investigating EQIs, the literature on responses to traditional contraction types is vast. Based on the relevant literature, EQIs may provide a practical means of increasing total volume, metabolite build-up, and hormonal signaling factors while safely enduring large quantities of mechanical tension with low levels of peak torque. Conversely, EQI contractions likely hold little neuromuscular specificity to high velocity or power movements. Therefore, EQI training seems to be effective for improving musculotendinous morphological and performance variables with low injury risk. Although speculative due to the limited specific literature, available evidence suggests a case for future experimentation.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources