Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP
- PMID: 31363049
- PMCID: PMC6697891
- DOI: 10.1073/pnas.1906036116
Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP
Abstract
Protein kinase A (PKA) holoenzyme, comprised of a cAMP-binding regulatory (R)-subunit dimer and 2 catalytic (C)-subunits, is the master switch for cAMP-mediated signaling. Of the 4 R-subunits (RIα, RIβ, RIIα, RIIβ), RIα is most essential for regulating PKA activity in cells. Our 2 RIα2C2 holoenzyme states, which show different conformations with and without ATP, reveal how ATP/Mg2+ functions as a negative orthosteric modulator. Biochemical studies demonstrate how the removal of ATP primes the holoenzyme for cAMP-mediated activation. The opposing competition between ATP/cAMP is unique to RIα. In RIIβ, ATP serves as a substrate and facilitates cAMP-activation. The isoform-specific RI-holoenzyme dimer interface mediated by N3A-N3A' motifs defines multidomain cross-talk and an allosteric network that creates competing roles for ATP and cAMP. Comparisons to the RIIβ holoenzyme demonstrate isoform-specific holoenzyme interfaces and highlights distinct allosteric mechanisms for activation in addition to the structural diversity of the isoforms.
Keywords: allosteric and orthosteric regulation; cAMP; isoform-specific quaternary structure; protein kinase A; structural biology.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.J Biol Chem. 2014 Oct 10;289(41):28505-12. doi: 10.1074/jbc.M114.584177. Epub 2014 Aug 11. J Biol Chem. 2014. PMID: 25112875 Free PMC article.
-
Structural analyses of the PKA RIIβ holoenzyme containing the oncogenic DnaJB1-PKAc fusion protein reveal protomer asymmetry and fusion-induced allosteric perturbations in fibrolamellar hepatocellular carcinoma.PLoS Biol. 2020 Dec 28;18(12):e3001018. doi: 10.1371/journal.pbio.3001018. eCollection 2020 Dec. PLoS Biol. 2020. PMID: 33370777 Free PMC article.
-
Structure and allostery of the PKA RIIβ tetrameric holoenzyme.Science. 2012 Feb 10;335(6069):712-6. doi: 10.1126/science.1213979. Science. 2012. PMID: 22323819 Free PMC article.
-
Structure, function, and regulation of human cAMP-dependent protein kinases.Adv Second Messenger Phosphoprotein Res. 1997;31:191-204. doi: 10.1016/s1040-7952(97)80019-5. Adv Second Messenger Phosphoprotein Res. 1997. PMID: 9344252 Review.
-
Dynamics of signaling by PKA.Biochim Biophys Acta. 2005 Dec 30;1754(1-2):25-37. doi: 10.1016/j.bbapap.2005.08.024. Epub 2005 Sep 22. Biochim Biophys Acta. 2005. PMID: 16214430 Review.
Cited by
-
Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling.Cell. 2020 Sep 17;182(6):1531-1544.e15. doi: 10.1016/j.cell.2020.07.043. Epub 2020 Aug 25. Cell. 2020. PMID: 32846158 Free PMC article.
-
Molecular determinants and signaling effects of PKA RIα phase separation.Mol Cell. 2024 Apr 18;84(8):1570-1584.e7. doi: 10.1016/j.molcel.2024.03.002. Epub 2024 Mar 26. Mol Cell. 2024. PMID: 38537638 Free PMC article.
-
An auto-inhibited state of protein kinase G and implications for selective activation.Elife. 2022 Aug 5;11:e79530. doi: 10.7554/eLife.79530. Elife. 2022. PMID: 35929723 Free PMC article.
-
A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction.Nat Struct Mol Biol. 2022 Oct;29(10):990-999. doi: 10.1038/s41594-022-00838-z. Epub 2022 Oct 6. Nat Struct Mol Biol. 2022. PMID: 36202993 Free PMC article.
-
Gαs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant Gαs-PKA Signaling.Pharmacol Rev. 2021 Oct;73(4):155-197. doi: 10.1124/pharmrev.120.000269. Pharmacol Rev. 2021. PMID: 34663687 Free PMC article. Review.
References
-
- Knighton D. R., et al. , Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414 (1991). - PubMed
-
- Johnson D. A., Akamine P., Radzio-Andzelm E., Madhusudan M., Taylor S. S., Dynamics of cAMP-dependent protein kinase. Chem. Rev. 101, 2243–2270 (2001). - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions