Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 30;12(592):eaaw2418.
doi: 10.1126/scisignal.aaw2418.

TNFR1 membrane reorganization promotes distinct modes of TNFα signaling

Affiliations

TNFR1 membrane reorganization promotes distinct modes of TNFα signaling

Penny E Morton et al. Sci Signal. .

Abstract

Signaling by the ubiquitously expressed tumor necrosis factor receptor 1 (TNFR1) after ligand binding plays an essential role in determining whether cells exhibit survival or death. TNFR1 forms distinct signaling complexes that initiate gene expression programs downstream of the transcriptional regulators NFκB and AP-1 and promote different functional outcomes, such as inflammation, apoptosis, and necroptosis. Here, we investigated the ways in which TNFR1 was organized at the plasma membrane at the nanoscale level to elicit different signaling outcomes. We confirmed that TNFR1 forms preassembled clusters at the plasma membrane of adherent cells in the absence of ligand. After trimeric TNFα binding, TNFR1 clusters underwent a conformational change, which promoted lateral mobility, their association with the kinase MEKK1, and activation of the JNK/p38/NFκB pathway. These phenotypes required a minimum of two TNFR1-TNFα contact sites; fewer binding sites resulted in activation of NFκB but not JNK and p38. These data suggest that distinct modes of TNFR1 signaling depend on nanoscale changes in receptor organization.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources