Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul;23(14):6018-6025.
doi: 10.26355/eurrev_201907_18413.

Low expression of microRNA-15b promotes the proliferation of retinal capillary endothelial cells and pericytes by up-regulating VEGFA in diabetic rats

Affiliations
Free article

Low expression of microRNA-15b promotes the proliferation of retinal capillary endothelial cells and pericytes by up-regulating VEGFA in diabetic rats

Y Xu et al. Eur Rev Med Pharmacol Sci. 2019 Jul.
Free article

Abstract

Objective: To investigate the role of microRNA-15b in diabetic retinopathy and its underlying mechanism.

Materials and methods: Diabetes rat model was established by streptozotocin injection. The mRNA expression of microRNA-15b in retinal capillary endothelial cells and pericytes of diabetic rats was detected by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). The mRNA and protein expressions of vascular endothelial growth factor A (VEGFA) were detected by qRT-PCR and Western blot, respectively. MicroRNA-15b mimics or inhibitor were transfected into retinal capillary endothelial cells and pericytes of diabetic rats, respectively. The mRNA expressions of microRNA-15b and VEGFA were detected by qRT-PCR. Cell counting kit-8 (CCK-8) assay was used to detect the proliferation of capillary endothelial cells and pericytes. Dual-Luciferase reporter gene assay was conducted to verify the binding condition of microRNA-15b and VEGFA. RNA immunoprecipitation (RIP) assay was performed to determine whether microRNA-15b could bind to AGO2. Rescue experiments were finally carried out by detecting the proliferation of retinal capillary endothelial cells and pericytes after downregulation or overexpression of microRNA-15b and VEGFA.

Results: The expression of microRNA-15b decreased, whereas VEGFA expression increased in retinal capillary endothelial cells and pericytes of diabetic rats. High expression of microRNA-15b in retinal capillary endothelial cells and pericytes resulted in VEGFA down-regulation and decreased proliferation. RIP assay results indicated that microRNA-15b could interact with AGO2. Additionally, Dual-Luciferase reporter gene assay showed that VEGFA is a direct target gene of microRNA-15b. VEGFA overexpression could reverse the inhibited proliferation of retinal capillary endothelial cells and pericytes induced by microRNA-15b overexpression. Similarly, VEGFA knockdown could reverse the effect of the low expression of microRNA-15b on the proliferation of retinal capillary endothelial cells and pericytes.

Conclusions: Low expression of microRNA-15b in retinal capillary endothelial cells and pericytes of diabetic rats promotes the development of diabetic retinopathy by up-regulating VEGFA.

PubMed Disclaimer

MeSH terms