Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx
- PMID: 31367039
- DOI: 10.1038/s41586-019-1449-z
Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx
Abstract
Salinity is detrimental to plant growth, crop production and food security worldwide. Excess salt triggers increases in cytosolic Ca2+ concentration, which activate Ca2+-binding proteins and upregulate the Na+/H+ antiporter in order to remove Na+. Salt-induced increases in Ca2+ have long been thought to be involved in the detection of salt stress, but the molecular components of the sensing machinery remain unknown. Here, using Ca2+-imaging-based forward genetic screens, we isolated the Arabidopsis thaliana mutant monocation-induced [Ca2+]i increases 1 (moca1), and identified MOCA1 as a glucuronosyltransferase for glycosyl inositol phosphorylceramide (GIPC) sphingolipids in the plasma membrane. MOCA1 is required for salt-induced depolarization of the cell-surface potential, Ca2+ spikes and waves, Na+/H+ antiporter activation, and regulation of growth. Na+ binds to GIPCs to gate Ca2+ influx channels. This salt-sensing mechanism might imply that plasma-membrane lipids are involved in adaption to various environmental salt levels, and could be used to improve salt resistance in crops.
Comment in
-
How plants perceive salt.Nature. 2019 Aug;572(7769):318-320. doi: 10.1038/d41586-019-02289-x. Nature. 2019. PMID: 31406308 No abstract available.
Similar articles
-
Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis.Plant J. 2017 Jan;89(2):278-290. doi: 10.1111/tpj.13382. Epub 2017 Jan 25. Plant J. 2017. PMID: 27643972
-
Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots.Plant Physiol Biochem. 2021 Feb;159:211-225. doi: 10.1016/j.plaphy.2020.11.055. Epub 2020 Dec 8. Plant Physiol Biochem. 2021. PMID: 33385704
-
A Ca2+-sensor switch for tolerance to elevated salt stress in Arabidopsis.Dev Cell. 2022 Sep 12;57(17):2081-2094.e7. doi: 10.1016/j.devcel.2022.08.001. Epub 2022 Aug 24. Dev Cell. 2022. PMID: 36007523
-
Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange.Plant Signal Behav. 2009 Aug;4(8):718-26. doi: 10.4161/psb.4.8.9236. Epub 2009 Aug 9. Plant Signal Behav. 2009. PMID: 19820346 Free PMC article. Review.
-
Genetic analysis of plant salt tolerance using Arabidopsis.Plant Physiol. 2000 Nov;124(3):941-8. doi: 10.1104/pp.124.3.941. Plant Physiol. 2000. PMID: 11080272 Free PMC article. Review. No abstract available.
Cited by
-
Investigations of Lipid Binding to Acyl-CoA-Binding Proteins (ACBP) Using Isothermal Titration Calorimetry (ITC).Methods Mol Biol. 2021;2295:401-415. doi: 10.1007/978-1-0716-1362-7_23. Methods Mol Biol. 2021. PMID: 34047990
-
Overexpression of phosphatidylserine synthase IbPSS1 affords cellular Na+ homeostasis and salt tolerance by activating plasma membrane Na+/H+ antiport activity in sweet potato roots.Hortic Res. 2020 Aug 1;7:131. doi: 10.1038/s41438-020-00358-1. eCollection 2020. Hortic Res. 2020. PMID: 32821414 Free PMC article.
-
Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress.EMBO J. 2023 Apr 17;42(8):e112401. doi: 10.15252/embj.2022112401. Epub 2023 Feb 22. EMBO J. 2023. PMID: 36811145 Free PMC article.
-
Interplay of Methodology and Conceptualization in Plant Abiotic Stress Signaling.Methods Mol Biol. 2023;2642:3-22. doi: 10.1007/978-1-0716-3044-0_1. Methods Mol Biol. 2023. PMID: 36944870
-
Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress.BMC Plant Biol. 2022 Jan 3;22(1):8. doi: 10.1186/s12870-021-03375-x. BMC Plant Biol. 2022. PMID: 34979910 Free PMC article.
References
-
- Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008). - PubMed
-
- Ismail, A. M. & Horie, T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 68, 405–434 (2017). - PubMed
-
- Yang, Y. & Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217, 523–539 (2018). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous