Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 12;62(17):8053-8061.
doi: 10.1021/acs.jmedchem.9b00814. Epub 2019 Aug 15.

A New Approach in Cancer Treatment: Discovery of Chlorido[ N, N'-disalicylidene-1,2-phenylenediamine]iron(III) Complexes as Ferroptosis Inducers

Affiliations

A New Approach in Cancer Treatment: Discovery of Chlorido[ N, N'-disalicylidene-1,2-phenylenediamine]iron(III) Complexes as Ferroptosis Inducers

Jessica Sagasser et al. J Med Chem. .

Abstract

Chlorido[N,N'-disalicylidene-1,2-phenylenediamine]iron(III) complexes generate lipid-based ROS and induce ferroptosis in leukemia and neuroblastoma cell lines. The extent of ferroptosis on the mode of action is regulated by simple modifications of the substituents at the 1,2-phenylenediamine moiety. In HL-60 cells, the unsubstituted lead exclusively caused ferroptosis. For instance, a 4-F substituent shifted the mode of action toward both ferroptosis and necroptosis, while the analogously chlorinated derivative exerted only necroptosis. Remarkably, cell-death in NB1 neuroblastoma cells was solely induced by ferroptosis, independent of the used substituents. The effects were higher than that of the therapeutically applied drug cisplatin. These data clearly demonstrate for the first time that not only iron ions but also iron salophene complexes are potent ferroptosis inducers, which can be optimized as antitumor agents.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources