Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 1;142(1):015001.
doi: 10.1115/1.4044388.

A Robotic Glenohumeral Simulator for Investigating Prosthetic Implant Subluxation

Affiliations

A Robotic Glenohumeral Simulator for Investigating Prosthetic Implant Subluxation

Matteo Mancuso et al. J Biomech Eng. .

Abstract

Total shoulder arthroplasty (TSA) is an effective treatment for glenohumeral (GH) osteoarthritis. However, it still suffers from a substantial rate of mechanical failure, which may be related to cyclic off-center loading of the humeral head on the glenoid. In this work, we present the design and evaluation of a GH joint robotic simulator developed to study GH translations. This five-degree-of-freedom robot was designed to replicate the rotations (±40 deg, accuracy 0.5 deg) and three-dimensional (3D) forces (up to 2 kN, with a 1% error settling time of 0.6 s) that the humeral implant exerts on the glenoid implant. We tested the performances of the simulator using force patterns measured in real patients. Moreover, we evaluated the effect of different orientations of the glenoid implant on joint stability. When simulating realistic dynamic forces and implant orientations, the simulator was able to reproduce stable behavior by measuring the translations of the humeral head of less than 24 mm with respect to the glenoid implant. Simulation with quasi-static forces showed dislocation in extreme ranges of implant orientation. The robotic GH simulator presented here was able to reproduce physiological GH forces and may therefore be used to further evaluate the effects of glenoid implant design and orientation on joint stability.

PubMed Disclaimer

MeSH terms

LinkOut - more resources