Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 1:182:110390.
doi: 10.1016/j.colsurfb.2019.110390. Epub 2019 Jul 25.

Toxicity response of highly colloidal, bioactive, monodisperse SiO2@ Pr(OH)3 hollow microspheres

Affiliations

Toxicity response of highly colloidal, bioactive, monodisperse SiO2@ Pr(OH)3 hollow microspheres

Anees A Ansari et al. Colloids Surf B Biointerfaces. .

Abstract

In a facile synthesis, highly colloidal, bioactive Pr(OH)3-encapsulated silica microspheres (PSMSs) with an average diameter of 500-700 nm were successfully prepared via a sol-gel process followed by heat treatment. The phase formation, morphology, surface and optical properties of the as-synthesized PSMSs were characterized by various techniques including X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscope (TEM), N2-adsorption-desorption, energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) and UV/vis spectroscopy. The PSMSs were semi-amorphous or ultra-small in size, highly dispersible in water, mesoporous, irregular in size and spherical in shape. The SEM images show a well-ordered broad nanoporous structure which is preserved after coating with Pr(OH)3 molecules, demonstrating interaction between the optically active Pr3+ ion and silanol (Si-OH) groups via hydrogen bonding. Optical spectra show well-resolved weak intensity 4f-4f absorption transitions in the visible region of the Pr3+ ion, indicating successful grafting of the Pr(OH)3 layer. Toxicity was measured by MTT and NRU assays to determine potential toxicity. Cell viability was suppressed with increasing dosage of PSMSs, but showed greater than 55% cell viability at a concentration of 200 μg/mL, resulting in low toxicity. Due to its high aqueous dispersibility, optical activity, excellent biocompatibility and low toxic nature, it could be a favorable material for biomedical and drug delivery applications.

Keywords: Amorphous; Lanthanides; Mesoporous; Microspheres; Optical properties.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources