Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Sep 5;263(25):12305-9.

Purification and characterization of aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus

Affiliations
  • PMID: 3137225
Free article
Comparative Study

Purification and characterization of aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus

G Marino et al. J Biol Chem. .
Free article

Abstract

Aspartate aminotransferase from the archaebacterium Sulfolobus solfataricus, a thermoacidophilic organism isolated from an acidic hot spring (optimal growth conditions: 87 degrees C, pH 3.5) was purified to homogeneity. The enzyme is a dimer (Mr subunit = 53,000) showing microheterogeneity when submitted to chromatofocusing and/or isoelectric focusing analysis (two main bands having pI = 6.8 and 6.3 were observed). The N-terminal sequence (22 residues) does not show any homology with any stretch of known sequence of aspartate aminotransferases from animal and bacterial sources. The apoenzyme can be reconstituted with pyridoxamine 5'-phosphate and/or pyridoxal 5'-phosphate, each subunit binding 1 mol of coenzyme. The absorption maxima of the pyridoxamine and pyridoxal form are centered at 325 and 335 nm, respectively; the shape of the pyridoxal form band does not change with pH. The enzyme has an optimum temperature higher than 95 degrees C, and at 100 degrees C shows a half-inactivation time of 2 h. The above properties seem to be unique even for enzymes from extreme thermophiles (Daniel, R. M. (1986) in Protein Structure, Folding, and Design (Oxender, D. L., ed) pp. 291-296, Alan R. Liss, Inc., New York) and lead to the conclusion that aspartate aminotransferase from S. solfataricus is one of the most thermophilic and thermostable enzymes so far known.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources