Hydrodynamics of Intravitreal Injections into Liquid Vitreous Substitutes
- PMID: 31374925
- PMCID: PMC6723562
- DOI: 10.3390/pharmaceutics11080371
Hydrodynamics of Intravitreal Injections into Liquid Vitreous Substitutes
Abstract
Intravitreal injections have become the cornerstone of retinal care and one of the most commonly performed procedures across all medical specialties. The impact of hydrodynamic forces of intravitreal solutions when injected into vitreous or vitreous substitutes has not been well described. While computational models do exist, they tend to underestimate the starting surface area of an injected bolus of a drug. Here, we report the dispersion profile of a dye bolus (50 µL) injected into different vitreous substitutes of varying viscosities, surface tensions, and volumetric densities. A novel 3D printed in vitro model of the vitreous cavity of the eye was designed to visualize the dispersion profile of solutions when injected into the following vitreous substitutes-balanced salt solution (BSS), sodium hyaluronate (HA), and silicone oils (SO)-using a 30G needle with a Reynolds number (Re) for injection ranging from approximately 189 to 677. Larger bolus surface areas were associated with faster injection speeds, lower viscosity of vitreous substitutes, and smaller difference in interfacial surface tensions. Boluses exhibited buoyancy when injected into standard S1000. The hydrodynamic properties of liquid vitreous substitutes influence the initial injected bolus dispersion profile and should be taken into account when simulating drug dispersion following intravitreal injection at a preclinical stage of development, to better inform formulations and performance.
Keywords: density; distribution; hyaluronic acid; hydrodynamics; intravitreal injection; surface tension; viscosity; vitreous.
Conflict of interest statement
The authors declare no conflict of interest.
Figures

















Similar articles
-
Self-sealing hyaluronic acid-coated 30-gauge intravitreal injection needles for preventing vitreous and drug reflux through needle passage.Sci Rep. 2021 Aug 20;11(1):16996. doi: 10.1038/s41598-021-96561-8. Sci Rep. 2021. PMID: 34417529 Free PMC article.
-
Induction of posterior vitreous detachment in rabbits by intravitreal injection of tissue plasminogen activator following cryopexy.Exp Eye Res. 2000 Jan;70(1):31-9. doi: 10.1006/exer.1999.0772. Exp Eye Res. 2000. PMID: 10644418
-
Ex Vivo Visualization of Distribution of Intravitreal Injections in the Porcine Vitreous and Hydrogels Simulating the Vitreous.Pharmaceutics. 2023 Feb 27;15(3):786. doi: 10.3390/pharmaceutics15030786. Pharmaceutics. 2023. PMID: 36986647 Free PMC article.
-
Vitreous substitutes: a comprehensive review.Surv Ophthalmol. 2011 Jul-Aug;56(4):300-23. doi: 10.1016/j.survophthal.2010.09.001. Epub 2011 May 24. Surv Ophthalmol. 2011. PMID: 21601902 Review.
-
Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport.Curr Eye Res. 2021 Apr;46(4):429-444. doi: 10.1080/02713683.2020.1826977. Epub 2020 Oct 12. Curr Eye Res. 2021. PMID: 33040616 Review.
Cited by
-
Effects of Flow Hydrodynamics and Eye Movements on Intraocular Drug Clearance.Pharmaceutics. 2022 Jun 15;14(6):1267. doi: 10.3390/pharmaceutics14061267. Pharmaceutics. 2022. PMID: 35745839 Free PMC article.
-
Vitreous Substitutes as Drug Release Systems.Transl Vis Sci Technol. 2022 Sep 1;11(9):14. doi: 10.1167/tvst.11.9.14. Transl Vis Sci Technol. 2022. PMID: 36125790 Free PMC article. Review.
-
The EyeFlowCell: Development of a 3D-Printed Dissolution Test Setup for Intravitreal Dosage Forms.Pharmaceutics. 2021 Sep 3;13(9):1394. doi: 10.3390/pharmaceutics13091394. Pharmaceutics. 2021. PMID: 34575470 Free PMC article.
-
CARING: Cannula for Alleviation of Retinal Injury Caused by Needle Fluidic Gashing.Bioengineering (Basel). 2024 Jul 15;11(7):718. doi: 10.3390/bioengineering11070718. Bioengineering (Basel). 2024. PMID: 39061799 Free PMC article.
-
Thermosensitive Intravitreal In Situ Implant of Cefuroxime Based on Poloxamer 407 and Hyaluronic Acid.Gels. 2023 Aug 28;9(9):693. doi: 10.3390/gels9090693. Gels. 2023. PMID: 37754374 Free PMC article.
References
-
- Lau P.E., Jenkins K.S., Layton C.J. Current Evidence for the Prevention of Endophthalmitis in Anti-VEGF Intravitreal Injections. [(accessed on 24 July 2018)];J Ophthalmol. 2018 2018:1–8. doi: 10.1155/2018/8567912. Available online: https://www.hindawi.com/journals/joph/2018/8567912/ - DOI - PMC - PubMed
-
- Lamminsalo M., Taskinen E., Karvinen T., Subrizi A., Murtomäki L., Urtti A., Ranta V.P. Extended Pharmacokinetic Model of the Rabbit Eye for Intravitreal and Intracameral Injections of Macromolecules: Quantitative Analysis of Anterior and Posterior Elimination Pathways. [(accessed on 31 August 2018)];Pharm. Res. 2018 35:153. doi: 10.1007/s11095-018-2435-0. Available online: http://link.springer.com/10.1007/s11095-018-2435-0. - DOI - DOI - PubMed
-
- CATT Research Group. Martin D.F., Maguire M.G., Ying G., Grunwald J.E., Fine S.L., Jaffe G.J. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. [(accessed on 19 May 2011)];N. Engl. J. Med. 2011 364:1897–1908. doi: 10.1016/j.ophtha.2012.03.053. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:new+englan.... - DOI - PMC - PubMed
-
- Tanzi M.G. Aflibercept: Bimonthly intravitreal injection for AMD. Pharm. Today. 2016;18:43. doi: 10.1016/j.ptdy.2016.11.019. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases