Tetraether lipid components from a thermoacidophilic archaebacterium. Chemical structure and physical polymorphism
- PMID: 3138418
- DOI: 10.1016/0022-2836(88)90149-0
Tetraether lipid components from a thermoacidophilic archaebacterium. Chemical structure and physical polymorphism
Abstract
As a continuation of an X-ray scattering study of the tetraether lipids extracted from the thermophilic archaebacterium Sulfolobus solfataricus, the phase behaviour of four fractions of the complex polar lipid extract (PLE) is described. Each molecule of two of these fractions (P1 and GL) carries an unsubstituted glycerol headgroup, those of another (P2) no such group; the fourth fraction (WPLE) is obtained by water-washing PLE, thus reducing its P2 content from approximately 48% to approximately 24% and increasing the average number of molecules bearing an unsubstituted glycerol headgroup from approximately 0.4 to approximately 0.6. The main result is a striking correlation between the phase behaviour and the average ratio of unsubstituted glycerol headgroups to the total number of headgroups: the fractions P1, GL and WPLE, in which that number is respectively 0.5, 0.5 and 0.3, form rod-containing phases; the fraction P2, in which that number is zero, yields a lamellar phase throughout the phase diagram. An analysis of the dimensions of the structure elements confirms our previous conclusion that, in the presence of a sufficient amount of water, the unsubstituted glycerol headgroups partition preferentially in the hydrocarbon regions rather than at the polar/apolar interfaces. These results, moreover, corroborate our previous conjectures regarding the correlations between the structure of the plasma membrane, the phase behaviour of the lipid extract and life at high temperature.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
