Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 6;17(1):252.
doi: 10.1186/s12967-019-1992-2.

A methodology for deriving the sensitivity of pooled testing, based on viral load progression and pooling dilution

Affiliations

A methodology for deriving the sensitivity of pooled testing, based on viral load progression and pooling dilution

Ngoc T Nguyen et al. J Transl Med. .

Abstract

Background: Pooled testing, in which biological specimens from multiple subjects are combined into a testing pool and tested via a single test, is a common testing method for both surveillance and screening activities. The sensitivity of pooled testing for various pool sizes is an essential input for surveillance and screening optimization, including testing pool design. However, clinical data on test sensitivity values for different pool sizes are limited, and do not provide a functional relationship between test sensitivity and pool size. We develop a novel methodology to accurately compute the sensitivity of pooled testing, while accounting for viral load progression and pooling dilution. We demonstrate our methodology on the nucleic acid amplification testing (NAT) technology for the human immunodeficiency virus (HIV).

Methods: Our methodology integrates mathematical models of viral load progression and pooling dilution to derive test sensitivity values for various pool sizes. This methodology derives the conditional test sensitivity, conditioned on the number of infected specimens in a pool, and uses the law of total probability, along with higher dimensional integrals, to derive pooled test sensitivity values. We also develop a highly accurate and easy-to-compute approximation function for pooled test sensitivity of the HIV ULTRIO Plus NAT Assay. We calibrate model parameters using published efficacy data for the HIV ULTRIO Plus NAT Assay, and clinical data on viral RNA load progression in HIV-infected patients, and use this methodology to derive and validate the sensitivity of the HIV ULTRIO Plus Assay for various pool sizes.

Results: We demonstrate the value of this methodology through optimal testing pool design for HIV prevalence estimation in Sub-Saharan Africa. This case study indicates that the optimal testing pool design is highly efficient, and outperforms a benchmark pool design.

Conclusions: The proposed methodology accounts for both viral load progression and pooling dilution, and is computationally tractable. We calibrate this model for the HIV ULTRIO Plus NAT Assay, show that it provides highly accurate sensitivity estimates for various pool sizes, and, thus, yields efficient testing pool design for HIV prevalence estimation. Our model is generic, and can be calibrated for other infections.

Keywords: Pooled testing; Pooling dilution; Public health screening; Sensitivity estimation; Surveillance study.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
HIV viral RNA load progression spanning the infection’s life-time, covering the window period, peak viremia phase, and chronic phase (based on the data in Table 1)
Fig. 2
Fig. 2
Fitted function versus the data points in Table 2

References

    1. American Red Cross. Blood testing. http://www.redcrossblood.org/learn-about-blood/what-happens-donated-bloo.... Accessed 27 May 2017.
    1. Aprahamian H, Bish DR, Bish EK. Residual risk and waste in donated blood with pooled nucleic acid testing. Stat Med. 2016;35(28):5283–5301. doi: 10.1002/sim.7066. - DOI - PubMed
    1. Aprahamian H, Bish EK, Bish DR. Adaptive risk-based pooling in public health screening. IISE Trans. 2018;50(9):753–766. doi: 10.1080/24725854.2018.1434333. - DOI
    1. Bish EK, Ragavan PK, Bish DR, Slonim AD, Stramer SL. A probabilistic method for the estimation of residual risk in donated blood. Biostatistics. 2014;15(4):620–635. doi: 10.1093/biostatistics/kxu017. - DOI - PubMed
    1. Biswas R, Tabor E, Hsia CC, Wright DJ, Laycock ME, Fiebig EW, Peddada L, Smith R, Schreiber GB, Epstein JS, Nemo GJ, Busch MP. Comparative sensitivity of HBV NATs and HBsAg assays for detection of acute HBV infection. Transfusion. 2003;43(6):788–798. doi: 10.1046/j.1537-2995.2003.00424.x. - DOI - PubMed

Publication types