FRET-based analysis of the cardiac troponin T linker region reveals the structural basis of the hypertrophic cardiomyopathy-causing Δ160E mutation
- PMID: 31387947
- PMCID: PMC6779437
- DOI: 10.1074/jbc.RA118.005098
FRET-based analysis of the cardiac troponin T linker region reveals the structural basis of the hypertrophic cardiomyopathy-causing Δ160E mutation
Abstract
Mutations in the cardiac thin filament (TF) have highly variable effects on the regulatory function of the cardiac sarcomere. Understanding the molecular-level dysfunction elicited by TF mutations is crucial to elucidate cardiac disease mechanisms. The hypertrophic cardiomyopathy-causing cardiac troponin T (cTnT) mutation Δ160Glu (Δ160E) is located in a putative "hinge" adjacent to an unstructured linker connecting domains TNT1 and TNT2. Currently, no high-resolution structure exists for this region, limiting significantly our ability to understand its role in myofilament activation and the molecular mechanism of mutation-induced dysfunction. Previous regulated in vitro motility data have indicated mutation-induced impairment of weak actomyosin interactions. We hypothesized that cTnT-Δ160E repositions the flexible linker, altering weak actomyosin electrostatic binding and acting as a biophysical trigger for impaired contractility and the observed remodeling. Using time-resolved FRET and an all-atom TF model, here we first defined the WT structure of the cTnT-linker region and then identified Δ160E mutation-induced positional changes. Our results suggest that the WT linker runs alongside the C terminus of tropomyosin. The Δ160E-induced structural changes moved the linker closer to the tropomyosin C terminus, an effect that was more pronounced in the presence of myosin subfragment (S1) heads, supporting previous findings. Our in silico model fully supported this result, indicating a mutation-induced decrease in linker flexibility. Our findings provide a framework for understanding basic pathogenic mechanisms that drive severe clinical hypertrophic cardiomyopathy phenotypes and for identifying structural targets for intervention that can be tested in silico and in vitro.
Keywords: allosteric regulation; allostery; cardiac thin filament; cardiomyopathy; fluorescence resonance energy transfer (FRET); heart disease; hypertrophic cardiomyopathy; molecular dynamics; muscle contraction; mutant; troponin.
© 2019 Abdullah et al.
Conflict of interest statement
The authors declare that they have no conflicts of interest with the contents of this article
Figures
Similar articles
-
Allosteric effects of cardiac troponin TNT1 mutations on actomyosin binding: a novel pathogenic mechanism for hypertrophic cardiomyopathy.Arch Biochem Biophys. 2014 Jun 15;552-553:21-8. doi: 10.1016/j.abb.2014.01.016. Epub 2014 Jan 28. Arch Biochem Biophys. 2014. PMID: 24480310 Free PMC article.
-
Resolving the structure and dynamics of the disordered C terminus of human cardiac troponin T and effects of cardiomyopathic mutations.Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2425343122. doi: 10.1073/pnas.2425343122. Epub 2025 Jul 8. Proc Natl Acad Sci U S A. 2025. PMID: 40627400
-
Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation.Circ Res. 2024 Oct 25;135(10):974-989. doi: 10.1161/CIRCRESAHA.124.325223. Epub 2024 Sep 27. Circ Res. 2024. PMID: 39328062
-
Molecular mechanisms regulating the myofilament response to Ca2+: implications of mutations causal for familial hypertrophic cardiomyopathy.Basic Res Cardiol. 1997;92 Suppl 1:63-74. doi: 10.1007/BF00794070. Basic Res Cardiol. 1997. PMID: 9202846 Review.
-
Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy.Cardiovasc Res. 1999 Oct;44(1):20-36. doi: 10.1016/s0008-6363(99)00213-8. Cardiovasc Res. 1999. PMID: 10615387 Review.
Cited by
-
Structure and Dynamics of the Flexible Cardiac Troponin T Linker Domain in a Fully Reconstituted Thin Filament.Biochemistry. 2022 Jul 5;61(13):1229-1242. doi: 10.1021/acs.biochem.2c00091. Epub 2022 Jun 13. Biochemistry. 2022. PMID: 35696530 Free PMC article.
-
Cardiac troponin and tropomyosin bind to F-actin cooperatively, as revealed by fluorescence microscopy.FEBS Open Bio. 2020 Jul;10(7):1362-1372. doi: 10.1002/2211-5463.12876. Epub 2020 Jun 18. FEBS Open Bio. 2020. PMID: 32385956 Free PMC article.
-
Structural dynamics of the intrinsically disordered linker region of cardiac troponin T.bioRxiv [Preprint]. 2024 Oct 14:2024.05.30.596451. doi: 10.1101/2024.05.30.596451. bioRxiv. 2024. PMID: 38853835 Free PMC article. Preprint.
-
A troponin T variant linked with pediatric dilated cardiomyopathy reduces the coupling of thin filament activation to myosin and calcium binding.Mol Biol Cell. 2021 Aug 19;32(18):1677-1689. doi: 10.1091/mbc.E21-02-0082. Epub 2021 Jun 23. Mol Biol Cell. 2021. PMID: 34161147 Free PMC article.
-
Docking Troponin T onto the Tropomyosin Overlapping Domain of Thin Filaments.Biophys J. 2020 Jan 21;118(2):325-336. doi: 10.1016/j.bpj.2019.11.3393. Epub 2019 Dec 6. Biophys J. 2020. PMID: 31864661 Free PMC article.
References
-
- Alcalai R., Seidman J. G., and Seidman C. E. (2008) Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J. Cardiovasc. Electrophysiol. 19, 104–110 - PubMed
-
- Kimura A. (2015) Molecular genetics and pathogenesis of cardiomyopathy. J. Hum. Genet. 61, 41–50 - PubMed
-
- Alfares A. A., Kelly M. A., McDermott G., Funke B. H., Lebo M. S., Baxter S. B., Shen J., McLaughlin H. M., Clark E. H., Babb L. J., Cox S. W., DePalma S. R., Ho C. Y., Seidman J. G., Seidman C. E., et al. (2015) Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet. Med. 17, 880–888 10.1038/gim.2014.205 - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
