Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug;28(4):1461-1473.
doi: 10.1007/s12350-019-01832-7. Epub 2019 Aug 6.

Sodium fluoride in cardiovascular disorders: A systematic review

Affiliations

Sodium fluoride in cardiovascular disorders: A systematic review

Beatriz Isabel Silva Mendes et al. J Nucl Cardiol. 2021 Aug.

Abstract

Background: 18-Fluorine sodium fluoride is a well-known radiotracer used for bone metastasis diagnosis. Its uptake correlation with cardiovascular (CV) risk was primarily suggested in oncological patients. Moreover, as a specific marker of microcalcification, it seems to correlate with CV disease progression and plaque instability.

Methods and results: Our purpose was to systematically review clinical studies that characterized the use of this marker in CV conditions. In atherosclerosis, most studies report a positive correlation with the burden of CV risk factors and vascular calcification. A higher uptake was found in culprit plaques/rupture sites in coronary and carotid arteries and it was also linked to high-risk features in histology and intravascular imaging analysis of the plaques. In aortic stenosis, this tracer displayed an increasing uptake with disease severity.

Conclusions: Sodium fluoride positron emission tomography is a promising non-invasive technique to identify high-risk plaques, which sets ground to a potential use of this tracer in evaluating atherosclerotic disease progression and degenerative changes in aortic valve stenosis. Nevertheless, there is a need for further prospective evidence that demonstrates this technique's value in predicting clinical events, adjusting treatment strategies, and improving patient outcomes.

Keywords: CAD; PET; atherosclerosis; image analysis; molecular imaging agents; valvular heart disease.

PubMed Disclaimer

References

    1. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995;92:1355-74. - DOI
    1. Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis: The skeleton key. J Am Coll Cardiol 2015;66:561-77. - DOI
    1. Irkle A, Vesey AT, Lewis DY, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun 2015;6:7495. - DOI
    1. Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 1992;33:633-42. - PubMed
    1. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001;31:28-49. - DOI

Publication types

LinkOut - more resources