Sulphation by cultured cells. Cysteine, cysteinesulphinic acid and sulphite as sources for proteoglycan sulphate
- PMID: 3138971
- PMCID: PMC1149140
- DOI: 10.1042/bj2520305
Sulphation by cultured cells. Cysteine, cysteinesulphinic acid and sulphite as sources for proteoglycan sulphate
Abstract
Bovine aortic smooth-muscle cells, bovine aortic endothelial cells, and IMR-90 human embryonic lung fibroblasts were tested to determine their ability to use cysteine or cysteine metabolites as a source of sulphate (SO4). Cells were incubated in SO4-depleted medium containing [3H]glucosamine plus 0.2 mM-cystine, 0.3 mM-cysteinesulphinic acid or 0.3 mM-sulphite (SO3). The [3H]chondroitin sulphate produced by the different cells was found to vary considerably in degree of sulphation under these conditions. One line of smooth-muscle cells utilized cysteine effectively as a SO4 source and thus produced chondroitin sulphate which was highly sulphated. IMR-90 fibroblasts produced partly sulphated chondroitin sulphate under these conditions, while another smooth-muscle cell line could not utilize cysteine, but could utilize cysteinesulphinic acid as a partial SO4 source. In contrast with the above cells, endothelial cells could not use cysteine or cysteinesulphinic acid as a source of SO4 and produced chondroitin with almost no SO4. All of the cells were able to utilize SO3. Incubation of the cells in the SO4-depleted medium containing [35S]cysteine confirmed that only the first line of smooth-muscle cells could convert significant amounts of [35S]cysteine to 35SO4. Furthermore, the addition of 0.4 mM inorganic SO4 did not inhibit the production of SO4 from cysteine by these cells.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
