Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 8;10(1):3559.
doi: 10.1038/s41467-019-11525-x.

Packaging materials with desired mechanical and barrier properties and full chemical recyclability

Affiliations

Packaging materials with desired mechanical and barrier properties and full chemical recyclability

Ainara Sangroniz et al. Nat Commun. .

Abstract

Plastics have become indispensable in modern life and the material of choice in packaging applications, but they have also caused increasing plastic waste accumulation in oceans and landfills. Although there have been continuous efforts to develop biodegradable plastics, the mechanical and/or transport properties of these materials still need to be significantly improved to be suitable for replacing conventional plastic packaging materials. Here we report a class of biorenewable and degradable plastics, based on copolymers of γ-butyrolactone and its ring-fused derivative, with competitive permeability and elongation at break compared to commodity polymers and superior mechanical and transport properties to those of most promising biobased plastics. Importantly, these materials are designed with full chemical recyclability built into their performance with desired mechanical and barrier properties, thus representing a circular economy approach to plastic packaging materials.

PubMed Disclaimer

Conflict of interest statement

E.Y.-X. C. and J.Z. are inventors on patent applications US 62/540,672 (August 3, 2017), US 16/053,225 (August 2, 2018), and PCT/US2018/045013 (August 2, 2018), submitted by Colorado State University Research Foundation. Other authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Transport and mechanical properties. a Water vapor transmission rate of fully chemically recyclable PT6HP and PγBL homopolymers and commercially available PET, LDPE and biobased/biodegradable PLLA and PHB. b Oxygen permeability coefficient of PT6HP, PγBL, PET, LDPE, PLLA, and PHB. c Elongation at break of PT6HP, PγBL, PET, LDPE, PLLA, and PHB. Error bars correspond to the standard deviation (s.d.) of at least four measurements
Fig. 2
Fig. 2
Synthesis of copolymers and their properties. a Schematic representation of copolymerization of T6HP and γBL. b Water vapor transmission rate of chemically recyclable copolymers and commercially available PET, LDPE and biobased/biodegradable PLLA and PHB. c Oxygen permeability coefficient of PT6HP, PγBL, PET, LDPE, PLLA, and PHB. d Elongation at break of PT6HP, PγBL, PET, LDPE, PLLA, and PHB. Error bars correspond to the standard deviation (s.d.) of at least four measurements
Fig. 3
Fig. 3
Chemical recyclability of copolymers. a Closed loop of chemically recyclable polymers. b 1H NMR spectra (C7D8) of starting γBL (top) and T6HP (second from top) comonomers as comparison, a mixture of the recycled comonomers after depolymerization (third from top), and the copolymer (27% γBL incorporation) before chemolysis (bottom)

References

    1. World Economic Forum, Ellen MacArthur Foundation, and McKinsey & Company, The New Plastics Economy: Rethinking the Future of Plastics (Ellen MacArthur Foundation, 2016); https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-e... Accessed Feb 2019.
    1. Tang X, Chen EY-X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem. 2019;5:284–312. doi: 10.1016/j.chempr.2018.10.011. - DOI
    1. Jehanno C, et al. Organocatalysed depolymerisation of PET in a fully sustainable cycle using thermally stable protic ionic salt. Green. Chem. 2018;20:1205–1212. doi: 10.1039/C7GC03396F. - DOI
    1. Eagan JM, et al. Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science. 2017;355:814–816. doi: 10.1126/science.aah5744. - DOI - PubMed
    1. Gross RA, Kalra B. Biodegradable polymers for the environment. Green. Chem. 2002;297:803–817. - PubMed

Publication types