Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug;41(8):1029-47.
doi: 10.7164/antibiotics.41.1029.

Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides

Affiliations
Free article

Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides

G M Bright et al. J Antibiot (Tokyo). 1988 Aug.
Free article

Abstract

A series of erythromycin A-derived semisynthetic antibiotics, featuring incorporation of a basic nitrogen atom into a ring expanded (15-membered) macrocyclic lactone, have been prepared and biologically evaluated. Semisynthetic modifications focused upon (1) varied substitution at the macrocyclic ring nitrogen and (2) epimerization or amine substitution at the C-4'' hydroxyl site within the cladinose sugar. In general, the new azalides exhibit improved Gram-negative potency, expanding the spectrum of erythromycin A to fully include Haemophilus influenzae and Neisseria gonorrhoeae. When compared to erythromycin A, the azalides exhibit substantially increased half-life and area-under-the-curve values in all species studied. The overall in vitro/in vivo performance of N-methyl, C-4'' epimers 3a and 9; and C-4'' amine 11 identify these compounds as the most interesting erythromycin A-superior agents. Compound 3a has been advanced to clinical study.

PubMed Disclaimer