Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2019 Jul 26;11(7):375-382.
doi: 10.4252/wjsc.v11.i7.375.

Predicting differentiation potential of human pluripotent stem cells: Possibilities and challenges

Affiliations
Editorial

Predicting differentiation potential of human pluripotent stem cells: Possibilities and challenges

Li-Ping Liu et al. World J Stem Cells. .

Abstract

The capability of human pluripotent stem cell (hPSC) lines to propagate indefinitely and differentiate into derivatives of three embryonic germ layers makes these cells be powerful tools for basic scientific research and promising agents for translational medicine. However, variations in differentiation tendency and efficiency as well as pluripotency maintenance necessitate the selection of hPSC lines for the intended applications to save time and cost. To screen the qualified cell lines and exclude problematic cell lines, their pluripotency must be confirmed initially by traditional methods such as teratoma formation or by high-throughput gene expression profiling assay. Additionally, their differentiation potential, particularly the lineage-specific differentiation propensities of hPSC lines, should be predicted in an early stage. As a complement to the teratoma assay, RNA sequencing data provide a quantitative estimate of the differentiation ability of hPSCs in vivo. Moreover, multiple scorecards have been developed based on selected gene sets for predicting the differentiation potential into three germ layers or the desired cell type many days before terminal differentiation. For clinical application of hPSCs, the malignant potential of the cells must also be evaluated. A combination of histologic examination of teratoma with quantitation of gene expression data derived from teratoma tissue provides safety-related predictive information by detecting immature teratomas, malignancy marker expression, and other parameters. Although various prediction methods are available, distinct limitations remain such as the discordance of results between different assays and requirement of a long time and high labor and cost, restricting their wide applications in routine studies. Therefore, simpler and more rapid detection assays with high specificity and sensitivity that can be used to monitor the status of hPSCs at any time and fewer targeted markers that are more specific for a given desired cell type are urgently needed.

Keywords: Differentiation potential; Embryoid bodies; Embryonic stem cells; Human pluripotent stem cells; Induced pluripotent stem cells; Lineage-specific differentiation; Malignant potential; Pluripotency; Prediction; Teratoma.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors have no conflict of interest to declare.

Figures

Figure 1
Figure 1
Schematic flow diagram of quality control of human pluripotent stem cells. hPSCs: Human pluripotent stem cells.

References

    1. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011;144:439–452. - PMC - PubMed
    1. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345:1247125. - PubMed
    1. Liu C, Oikonomopoulos A, Sayed N, Wu JC. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development. 2018:145. - PMC - PubMed
    1. Koyanagi-Aoi M, Ohnuki M, Takahashi K, Okita K, Noma H, Sawamura Y, Teramoto I, Narita M, Sato Y, Ichisaka T, Amano N, Watanabe A, Morizane A, Yamada Y, Sato T, Takahashi J, Yamanaka S. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci USA. 2013;110:20569–20574. - PMC - PubMed
    1. Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, Endo H, Eto K, Toguchida J, Uemoto S, Yamanaka S. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109:12538–12543. - PMC - PubMed

Publication types