Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 3;91(17):11063-11069.
doi: 10.1021/acs.analchem.9b01580. Epub 2019 Aug 21.

Guidelines for the Use of Deuterium Oxide (D2O) in 1H NMR Metabolomics

Affiliations

Guidelines for the Use of Deuterium Oxide (D2O) in 1H NMR Metabolomics

Kristina Elisa Haslauer et al. Anal Chem. .

Abstract

In metabolomics, nuclear magnetic resonance (NMR) spectroscopy allows to identify and quantify compounds in biological samples. The sample preparation generally requires only few steps; however, an indispensable factor is the addition of a locking substance into the biofluid sample, such as deuterium oxide (D2O). While creatinine loss in pure D2O is well-described, the effects of different D2O concentrations on the signal profile of biological samples are unknown. In this work, we investigated the effect of D2O levels in the NMR buffer system in urine samples, in dependence on dwell time and temperature exposition. We reveal a decrease of the urinary creatinine peak area up to 35% after 24 h of dwell time at room temperature (RT) using 25% (v/v) D2O, but only 4% loss using 2.5% D2O. 1H, inverse-gated (IG) 13C, DEPT-HSQC NMR, and mass spectrometry (MS) experiments confirmed a proton-deuterium (H/D) exchange at the CH2. This leads to underestimation of creatinine levels and has an extensive effect when creatinine is used for normalization. This work offers a sample stability examination, depending on the D2O concentration, dwell time, and temperature and enables a method to correct for the successive loss. We propose an equation to correct the creatinine loss for samples prepared with various D2O concentrations and storage temperatures for dwell times up to 24 h. The correction function was validated against an external data set with n = 26 samples. To ensure sufficient creatinine stability in future studies, we suggest that a maximum of 10% D2O should be used at 4 °C or 2.5% D2O at RT, respectively.

PubMed Disclaimer

LinkOut - more resources