Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep;104(9):1720-1730.
doi: 10.3324/haematol.2018.207530. Epub 2019 Aug 8.

Targeting sickle cell disease root-cause pathophysiology with small molecules

Affiliations
Review

Targeting sickle cell disease root-cause pathophysiology with small molecules

Yogen Saunthararajah. Haematologica. 2019 Sep.

Abstract

The complex, frequently devastating, multi-organ pathophysiology of sickle cell disease has a single root cause: polymerization of deoxygenated sickle hemoglobin. A logical approach to disease modification is, therefore, to interdict this root cause. Ideally, such interdiction would utilize small molecules that are practical and accessible for worldwide application. Two types of such small molecule strategies are actively being evaluated in the clinic. The first strategy intends to shift red blood cell precursor hemoglobin manufacturing away from sickle hemoglobin and towards fetal hemoglobin, which inhibits sickle hemoglobin polymerization by a number of mechanisms. The second strategy intends to chemically modify sickle hemoglobin directly in order to inhibit its polymerization. Important lessons have been learnt from the pre-clinical and clinical evaluations to date. Open questions remain, but this review summarizes the valuable experience and knowledge already gained, which can guide ongoing and future efforts for molecular mechanism-based, practical and accessible disease modification of sickle cell disease.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Polymerization of sickle hemoglobin drives the multi-organ cascade of sickle cell disease pathophysiology. This review examines the strategies to interdict the multi-organ cascade of sickle cell disease at its inception using small molecules that shift red blood cell precursor production from sickle hemoglobin (HbS) toward fetal hemoglobin (HbF), and small molecules that chemically modify HbS to decrease its polymerization. We published variations of this figure in Molokie et al. and Lavelle et al.
Figure 2.
Figure 2.
Induction of fetal hemoglobin (HbF) requires chromatin remodeling, including DNA hypomethylation, of the HbF gene locus. Bone marrow stress, e.g., from cytotoxic drugs such as hydroxyurea, can create chromatin remodeling during the recovery phase of surviving erythroid precursors. An alternative approach is to remodel the hemoglobin F (HbF) gene locus (HBG) directly, e.g., by directly inhibiting/repressing epigenetic enzymes. Enzymes shown are those known to be recruited by BCL11A, TR2 or TR4 (EHMT2 and PRMT5 are not reported participants in the BCL11A/TR2/TR4 hub). The relative efficiencies of these approaches are illustrated by the greater HbF increases produced in the same non-human primates or patients by decitabine ~0.2 mg/kg twice weekly versus hydroxyurea ~20 mg/kg daily. That is, the molar amount of decitabine administered per week is <1/1000th the amount of hydroxyurea administered per week. We published variations of this figure in Molokie et al. and Lavelle et al.

References

    1. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013;10(7):e1001484. - PMC - PubMed
    1. Saraf S, Farooqui M, Infusino G, et al. Standard clinical practice underestimates the role and significance of erythropoietin deficiency in sickle cell disease. Br J Haematol. 2011;153(3):386–392. - PubMed
    1. Kauf TL, Coates TD, Huazhi L, Mody-Patel N, Hartzema AG. The cost of health care for children and adults with sickle cell disease. Am J Hematol. 2009;84(6):323–327. - PubMed
    1. Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–1644. - PubMed
    1. Eaton WA, Bunn HF. Treating sickle cell disease by targeting HbS polymerization. Blood. 2017;129(20):2719–2726. - PMC - PubMed

Publication types

MeSH terms