Seeing the Forest for the Trees: Random Forest Models for Predicting Survival in Kidney Transplant Recipients
- PMID: 31403553
- DOI: 10.1097/TP.0000000000002923
Seeing the Forest for the Trees: Random Forest Models for Predicting Survival in Kidney Transplant Recipients
Similar articles
-
A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study.Sci Rep. 2017 Aug 21;7(1):8904. doi: 10.1038/s41598-017-08008-8. Sci Rep. 2017. PMID: 28827646 Free PMC article.
-
Patient Survival After Kidney Transplantation: Important Role of Graft-sustaining Factors as Determined by Predictive Modeling Using Random Survival Forest Analysis.Transplantation. 2020 May;104(5):1095-1107. doi: 10.1097/TP.0000000000002922. Transplantation. 2020. PMID: 31403555
-
Impact of ABO-Incompatible Living Donor Kidney Transplantation on Patient Survival.Am J Kidney Dis. 2020 Nov;76(5):616-623. doi: 10.1053/j.ajkd.2020.03.029. Epub 2020 Jul 12. Am J Kidney Dis. 2020. PMID: 32668318
-
Prediction modeling-part 2: using machine learning strategies to improve transplantation outcomes.Kidney Int. 2021 Apr;99(4):817-823. doi: 10.1016/j.kint.2020.08.026. Epub 2020 Sep 8. Kidney Int. 2021. PMID: 32916179 Review.
-
Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models.Int J Med Inform. 2019 Oct;130:103957. doi: 10.1016/j.ijmedinf.2019.103957. Epub 2019 Aug 24. Int J Med Inform. 2019. PMID: 31472443
Cited by
-
The expression characteristics of transmembrane protein genes in pancreatic ductal adenocarcinoma through comprehensive analysis of bulk and single-cell RNA sequence.Front Oncol. 2023 May 17;13:1047377. doi: 10.3389/fonc.2023.1047377. eCollection 2023. Front Oncol. 2023. PMID: 37265785 Free PMC article.
-
Differentiation of epilepsy and psychogenic nonepileptic events based on body fluid characteristics.Epilepsia Open. 2023 Sep;8(3):959-968. doi: 10.1002/epi4.12775. Epub 2023 Jun 26. Epilepsia Open. 2023. PMID: 37329211 Free PMC article.
-
Evaluating Histological Subtypes Classification of Primary Lung Cancers on Unenhanced Computed Tomography Based on Random Forest Model.J Healthc Eng. 2023 Feb 6;2023:8964676. doi: 10.1155/2023/8964676. eCollection 2023. J Healthc Eng. 2023. PMID: 36794098 Free PMC article.
-
Crossroads in Liver Transplantation: Is Artificial Intelligence the Key to Donor-Recipient Matching?Medicina (Kaunas). 2022 Nov 28;58(12):1743. doi: 10.3390/medicina58121743. Medicina (Kaunas). 2022. PMID: 36556945 Free PMC article. Review.
-
Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer.Sci Rep. 2024 Jul 13;14(1):16208. doi: 10.1038/s41598-024-66979-x. Sci Rep. 2024. PMID: 39003337 Free PMC article.
References
-
- Harrell FE. Regression Modeling Strategies2001New YorkSpringer;
-
- Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests.Psychol Methods200914323–348
-
- Ho DSW, Schierding W, Wake M, et al. Machine learning SNP based prediction for precision medicine.Front Genet201910267
-
- Breiamn L. Random forests.Machine Learning2001455–32
-
- Scheffner I, Gietzelt M, Abeling T, et al. Patient survival after kidney transplantation: important role of graft-sustaining factors as determined by predictive modeling using random survival forest analysis.TransplantationIn press
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical