Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 16:12:2125-2133.
doi: 10.2147/IDR.S198373. eCollection 2019.

Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt

Affiliations

Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt

Sara M Farhan et al. Infect Drug Resist. .

Abstract

Background: Pseudomonas aeruginosa (P. aeruginosa) represents a great threat to public health worldwide, due to its high ability to acquire resistance to different antibiotic classes. Carbapenems are effective against multidrug resistant (MDR) P. aeruginosa, but their widespread use has resulted in the emergence of carbapenem-resistant strains, which is considered a major global concern. This study aimed to determine the prevalence of carbapenem resistance among P. aeruginosa strains isolated from different sites of infection. Methods: Between October 2016 and February 2018, a total of 530 clinical specimens were collected from patients suffering from different infections, then processed and cultured. Isolates were tested for extended spectrum β-lactamase (ESBL) and metallo-β-lactamase (MBL) production using double-disk synergy test, modified Hodge tests, and disc potentiation test. PCR was used for the detection of selected OXA carbapenemases encoding genes. Results: Of 530 samples, 150 (28.3%) P. aeruginosa isolates were obtained. MDR strains were found in 66.6% (100 of 150) of isolates. Of 100 MDR P. aeruginosa isolates, 54 (54%) were ESBL producers and 21 (21%) carbapenem resistant P. aeruginosa. MBL production was found in 52.3% (eleven) carbapenem-resistant isolates. CTX-M15 was found among 55.5% of ESBL- producing P. aeruginosa. Carbapenemase genes detected were bla IMP (42.8%, nine of 21), bla VIM (52.3%, eleven of 21), bla GIM (52.3%, eleven of 21), bla SPM (38%, 8/21). In addition, isolates that were positive for the tested genes showed high resistance to other antimicrobials, such as colistin sulfate and tigecycline. Conclusion: Our study indicates that P. aeruginosa harboring ESBL and MBL with limited sensitivity to antibiotics are common among the isolated strains, which indicates the great problem facing the treatment of serious infectious diseases. As such, there is a need to study the resistance patterns of isolates and carry out screening for the presence of ESBL and MBL enzymes, in order to choose the proper antibiotic.

Keywords: ESBL; MBL; MDR; P. aeruginosa; antimicrobial resistance.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
Prevalence of Pseudomonas aeruginosa isolated from different hospitals in Minia.
Figure 2
Figure 2
Resistance pattern of Pseudomonas aeruginosa isolates to different antimicrobial agents.

References

    1. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. doi:10.1155/2016/2475067 - DOI - PMC - PubMed
    1. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. doi:10.1128/CMR.00040-09 - DOI - PMC - PubMed
    1. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45(6):568–585. doi:10.1016/j.ijantimicag.2015.03.001 - DOI - PubMed
    1. Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43(7):3129–3135. doi:10.1128/JCM.43.7.3129-3135.2005 - DOI - PMC - PubMed
    1. Kaleem F, Usman J, Hassan A, Khan A. Frequency and susceptibility pattern of metallo-beta-lactamase producers in a hospital in Pakistan. J Infect Dev Ctries. 2010;4(12):810–813. - PubMed