Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 13;14(8):e0220252.
doi: 10.1371/journal.pone.0220252. eCollection 2019.

Assessment of eco-sustainability vis-à-vis zoo-technical attributes of soybean meal (SBM) replacement with varying levels of coated urea in Nellore sheep (Ovis aries)

Affiliations

Assessment of eco-sustainability vis-à-vis zoo-technical attributes of soybean meal (SBM) replacement with varying levels of coated urea in Nellore sheep (Ovis aries)

P Ravi Kanth Reddy et al. PLoS One. .

Abstract

The contemporary environmental-stewardship programmes primarily aimed at curbing the global warming potential by adopting a multidisciplinary approach. Manipulating the feeding strategies has great potential in reducing the environmental footprints of livestock production. This study intends to assess the effect of soybean meal (SBM) replacement with varying levels of coated urea (SRU) on both zoo-technical (nutrient digestibility, heat increment, and physio-biochemical parameters) and environmental attributes. The coated urea was used to replace the SBM at 0, 25, 50, and 75 percent levels. Eight adult rams (43.02 ± 0.76) maintained in a conventional shed were used in a replicated 4 x 4 Latin square design. Not all the physiological parameters viz. rectal temperature, pulse rate, and respiratory rate were affected (P>0.05)f by varying levels of SRU incorporation. The SRU fed animals had higher (P<0.05) crude protein digestibility compared to SBM fed animals; however, the replacements did not affect the nutrient digestibility coefficients of DM, OM, NFC, NDFap, ADF, and hemicellulose components. The SRU did not affect various biochemical parameters such as serum glucose, total protein, albumin, globulin, urea, creatinine, ALT, AST, Ca, P and T3, and T4 levels; however, post-prandial serum urea N (SUN) values showed a diurnal quadratic pattern (P<0.05) with a dose-dependent relationship. Further, the SBM replacements had no effect on the calcium excretion, while the SRU incorporation decreased the faecal phosphorous content, thereby abating the eutrophication phenomenon. Although the SBM replacements did not affect in vivo water variables and faecal solid fractions, they managed to decrease the land and virtual water requirement along with global warming potential (GWP) of the entire trial. The GWP-perceptual map unveils the fact that replacement of conventional feed ingredients with NPN compounds aids in eco-friendly livestock production. Further, the conjectural analysis of the carbon footprint methodology revealed that agricultural by-products consideration could cause a huge increase in the GWP share of feed consumed, thus compelling the importance of research pertaining to feed production perspective as equal as ruminal methane amelioration.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Nitrogen release from coated SRU products in vitro in distilled water compared to uncoated urea.
Shown as means and standard errors of triplicate incubations (CUBP–Coated urea before processing, CUAP–Coated urea after processing).
Fig 2
Fig 2
a, b, c Temperature, Respiratory rate, and Pulse rate in sheep during the two periods (Morning Vs. Afternoon). Means bearing different superscripts (A,B) differ significantly (P>0.05) within the same group at different periods and (a, b) between groups in same (P<0.01) period.
Fig 3
Fig 3. Mean serum urea nitrogen as a function of time and replacements of soybean meal (R2 = 0.838; SUN = 10.276+1.282×SRU+0.529×SRU×TIME+0.801×TIME–0.100×TIME2).
Fig 4
Fig 4. GWP-standpoint perceptual map of different feeds employed in the present study.

References

    1. Pretty J, Bharucha ZP. Sustainable intensification in agricultural systems. Ann Bot. 2014; 114: 1571–1596. 10.1093/aob/mcu205 - DOI - PMC - PubMed
    1. Millen DD, Pacheco RDL, Arrigoni MDB, Galyean ML, Vasconcelos JT. A snapshot of management practices and nutritional recommendations used by feedlot nutritionists in Brazil. J Anim Sci. 2009;87: 3427–3439. 10.2527/jas.2009-1880 - DOI - PubMed
    1. Storm E, Ørskov ER. The nutritive value of rumen microorganisms in ruminant. Large-scale isolation and chemical composition of rumen microorganism. British J Nutr. 1983;50: 463–470. - PubMed
    1. Wheelock JB, Rhoads RP, Vanbaale MJ, Sanders SR, Baumgard LH. Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci. 2010;93: 644–655. 10.3168/jds.2009-2295 - DOI - PubMed
    1. Benedetti PDB, Paulino PVR, Marcondes MI, Valadares Filho SC, Martins TS, Lisboa EF, Silva LHP, Teixeira CRV, Duarte MS. Soybean meal replaced by slow release urea in finishing diets for beef cattle. Livestock Sci. 2014;165: 51–60.