Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov;38(45):7089-7105.
doi: 10.1038/s41388-019-0949-5. Epub 2019 Aug 13.

Mitochondrial fission causes cisplatin resistance under hypoxic conditions via ROS in ovarian cancer cells

Affiliations

Mitochondrial fission causes cisplatin resistance under hypoxic conditions via ROS in ovarian cancer cells

Youngjin Han et al. Oncogene. 2019 Nov.

Abstract

Mitochondria undergo fission and fusion continually for survival through the course of cellular adaption processes in response to changes in the surrounding environment. Dysregulated mitochondrial dynamics has been reported in various diseases including cancer. Under hypoxic conditions (<1% O2), the relationship between mitochondrial dynamics and sensitivity to cisplatin (CDDP) was examined in ovarian cancer cells. We found that hypoxia promoted mitochondrial fission and CDDP resistance in ovarian cancer cells. Hypoxia-induced reactive oxygen species (ROS) caused an increase in mitochondrial fission, a response abolished by free radical scavenging with N-acetylcysteine (NAC) and Trolox. Also, treatment of hydrogen peroxide (H2O2) decreased inhibitory p-Drp1 (Ser637) content and increased mitochondrial fission. Suppression of mitochondrial fission enhanced the CDDP sensitivity of hypoxic ovarian cancer cells. Lastly, in tumor spheroids from malignant ascites or tissues of patients with advanced-stage ovarian cancer, pretreatment with Mdivi-1 increased the CDDP sensitivity. Taken together, our results implicate that hypoxia-induced ROS trigger mitochondrial fission and CDDP resistance through downregulation of p-Drp1 (Ser637) and Mfn1 in ovarian cancer cells. Inhibition of Drp1 by Mdivi-1 treatment or si-Drp1 transfection increased CDDP sensitivity of ovarian cancer cells under hypoxia. Therefore, mitochondrial dynamics of cancer cells adapting to the hypoxic tumor microenvironment could be a potential target for anticancer therapy.

PubMed Disclaimer

References

    1. Coburn SB, Bray F, Sherman ME, Trabert B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer. 2017;140:2451–60. - PubMed - PMC
    1. Matz M, Coleman MP, Carreira H, Salmeron D, Chirlaque MD, Allemani C. Worldwide comparison of ovarian cancer survival: Histological group and stage at diagnosis (CONCORD-2). Gynecol Oncol. 2017;144:396–404. - PubMed
    1. Park HK, Ruterbusch JJ, Cote ML. Recent trends in ovarian cancer incidence and relative survival in the United States by race/ethnicity and histologic subtypes. Cancer Epidemiol Biomark Prev. 2017;26:1511–8.
    1. Capriglione S, Luvero D, Plotti F, Terranova C, Montera R, Scaletta G, et al. Ovarian cancer recurrence and early detection: may HE4 play a key role in this open challenge? A systematic review of literature. Med Oncol. 2017;34:164. - PubMed
    1. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15:1239–53. - PubMed - PMC

Publication types

MeSH terms