Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Aug 14:38:63-78.
doi: 10.22203/eCM.v038a06.

Biology of soft tissue repair: gingival epithelium in wound healing and attachment to the tooth and abutment surface

Affiliations
Free article
Review

Biology of soft tissue repair: gingival epithelium in wound healing and attachment to the tooth and abutment surface

S Gibbs et al. Eur Cell Mater. .
Free article

Abstract

Epithelium attachment to the tooth or abutment surface is necessary to form a biological seal preventing pathogens and irritants from penetrating the body and reaching the underlying soft tissues and bone, which in turn can lead to inflammation and subsequent bone resorption. The present review investigated oral wound closure and the role of micro-environment, saliva, crevicular fluid and microbiota in wound healing. The importance of the junctional epithelium (peri-implant epithelium) attachment to the abutment surface was investigated. Current research focuses on macro-design, surface-topography, surface-chemistry, materials, coatings and wettability to enhance attachment, since these optimised surface properties are expected to promote keratinocyte attachment and spreading through hemi-desmosome formation. Detailed studies describing the extent of junctional epithelium attachment - e.g. barrier function, hemi-desmosomes, epithelium quality, composition of the external basement membrane or ability of the epithelium to resist microbial penetration and colonisation - are not yet reported in animals due to ethical considerations, scalability, expense, technical challenges and limited availability of antibodies. In vitro studies generally include relatively simple 2D culture models, which lack the complexity required to draw relevant conclusions. Additionally, human organotypic 3D mucosa models are being developed. The present review concluded that more research using these organotypic mucosa models may identify relevant parameters involved in soft-tissue-abutment interactions, which could be used to study different macro-shapes and surface modifications. Such studies would bridge the gap between clinical, animal and traditional in vitro cell culture studies supporting development of abutments aiming at improved clinical performance.

PubMed Disclaimer

Publication types

LinkOut - more resources