Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov;29(11):1708-12.

Arachidonic acid metabolism in human trabecular meshwork cells

Affiliations
  • PMID: 3141310

Arachidonic acid metabolism in human trabecular meshwork cells

R N Weinreb et al. Invest Ophthalmol Vis Sci. 1988 Nov.

Abstract

Prostaglandins and other eicosanoids in the trabecular meshwork may play important physiological and pharmacological roles in the aqueous outflow pathway. In the present studies, we employed [14C]-arachidonic acid to explore potentially important pathways for the production of eicosanoids in cultured human trabecular meshwork cells (HTM). In these cells, we demonstrated that prostaglandin E2 (PGE2) and PGF2 alpha are major cyclooxygenase products, with some 6-keto-PGF1 alpha also detected. The amount of radiolabelled PGE2 formed was substantially higher than the PGF2 alpha formed in the early time periods. The amount of PGF2 alpha in the culture media increased at a time when the amount of PGE2 was declining, suggesting a possible metabolic conversion between the prostaglandins. HTM produced a range of products of the lipoxygenase pathway. Products co-eluting with 5, 12, and 15-hydroxyeicosatetraenoic acids (HETEs) were detected, with 12 and 15-HETEs predominating. A large amount of radiolabelled product was detected also in peaks co-eluting with leukotriene B4 (LTB4) and an LTB4 degradation product. Biosynthesis of lipoxygenase products was markedly inhibited by BW 755c and partially inhibited by dexamethasone. These data emphasize that HTM cells are capable of converting arachidonic acid into a wider variety of biologically active products than previously recognized.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources