Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 Jul 24:15:229-251.
doi: 10.2147/VHRM.S206747. eCollection 2019.

Prognostic implications of left ventricular strain by speckle-tracking echocardiography in the general population: a meta-analysis

Affiliations
Meta-Analysis

Prognostic implications of left ventricular strain by speckle-tracking echocardiography in the general population: a meta-analysis

Lamia Al Saikhan et al. Vasc Health Risk Manag. .

Abstract

Purpose: Left ventricular (LV) mechanics by speckle-tracking echocardiography (STE) is prognostic in patients with cardiovascular diseases, but evidence related to community-dwelling individuals is uncertain. We therefore performed a systematic review and meta-analysis of STE as a predictor of adverse outcomes in the general population.

Methods: PRISMA guidelines were followed and MEDLINE and EMBASE were searched to identify eligible studies. Primary outcome was all-cause mortality and secondary outcomes were composite cardiac and cardiovascular end-point. Random effects meta-analysis was performed, and a modified Newcastle-Ottawa Assessment Scale was used for quality assessment.

Results: Eight papers matched the predefined criteria (total number of individuals studied=11,744). All publications assessed global longitudinal strain (GLS) by two-dimensional speckle-tracking echocardiography (2D-STE), one assessed circumferential, radial and transverse strains, and one assessed GLS-derived post-systolic shortening. None assessed LV rotational measures in association with outcomes. Two studies reported associations between GLS and all-cause mortality and composite cardiovascular end-point. Six papers reported an association between GLS and composite cardiac end-point, three of which were from the same study. Four papers were suitable for meta-analysis. GLS predicted all-cause mortality (pooled minimally adjusted HR per unit strain (%)=1.07 [95% CI 1.03-1.11], p=0.001), and composite cardiovascular (pooled maximally adjusted HR=1.18 [1.09-1.28], p<0.0001) and cardiac (HR=1.08 [1.02-1.14], p=0.006) end-points. GLS also predicted coronary heart disease (HR=1.15 [1.03-1.29], p=0.017) and heart failure (HR=1.07 [1.02-1.13], p=0.012). The quality of all studies was good.

Conclusions: This study provides some evidence that STE may have utility as a measure of cardiac function and risk in the general population. 2D-STE-based GLS predicts total mortality, major adverse cardiac and cardiovascular end-points in community-dwelling individuals in a limited number of studies. Despite this, this systematic review also highlights important knowledge gaps in the current literature and further evidence is needed regarding the prognostic value of LV mechanics in unselected older populations.Registration number: CRD42018090302.

Keywords: cardiovascular disease; community-dwelling individuals; left ventricular strain; mortality.

PubMed Disclaimer

Conflict of interest statement

This work was presented at the British Society of Echocardiography 2018 as a presentation with interim findings. Professor Alun Hughes reports grants from British Heart Foundation, during the conduct of the study. The authors report no other conflicts of interest in this work.

Figures

Figure 1
Figure 1
PRISMA flow diagram illustrates different stages of this systematic review.
Figure 2
Figure 2
GLS as a predictor of all-cause mortality (A), composite cardiac end-point (B) and cardiovascular end-point (C). All-cause mortality HR estimates are from minimally adjusted (Cheng et al) and unadjusted (Brainin et al) models. Composite cardiovascular and cardiac end-points are based on maximally adjusted models (listed in the Supplementary materials). For Kuznetsova et al, endocardial-wall strain is shown. Hazard ratios are per unit change in strain value. The heterogeneity assessment including the I2 statistics and p-value of Q test is shown.
Figure 3
Figure 3
GLS as a predictor of coronary heart disease (A) and heart failure (B) on maximally adjusted models (listed in the Supplementary materials). For Kuznetsova et al, endocardial-strain is shown. Hazard ratios are per unit change in strain value. The heterogeneity assessment including the I2 statistics and p-value of Q test is shown.

Similar articles

Cited by

References

    1. Wang TJ, Evans JC, Benjamin EJ, Levy D, LeRoy EC, Vasan RS. Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation. 2003;108(8):977–982. doi:10.1161/01.CIR.0000085166.44904.79 - DOI - PubMed
    1. Potter E, Marwick TH. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging. 2018;11(2 Pt 1):260–274. - PubMed
    1. Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese society of echocardiography. J Am Soc Echocardiogr. 2011;24(3):277–313. doi:10.1016/j.echo.2011.01.015 - DOI - PubMed
    1. Jensen MT, Sogaard P, Andersen HU, et al. Global longitudinal strain is not impaired in type 1 diabetes patients without albuminuria: the Thousand & 1 study. JACC Cardiovasc Imaging. 2015;8(4):400–410. doi:10.1016/j.jcmg.2014.12.020 - DOI - PubMed
    1. Narayanan A, Aurigemma GP, Chinali M, Hill JC, Meyer TE, Tighe DA. Cardiac mechanics in mild hypertensive heart disease: a speckle-strain imaging study. Circ Cardiovasc Imaging. 2009;2(5):382–390. doi:10.1161/CIRCIMAGING.108.811620 - DOI - PubMed

MeSH terms