Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 15:202:116091.
doi: 10.1016/j.neuroimage.2019.116091. Epub 2019 Aug 12.

Image processing and analysis methods for the Adolescent Brain Cognitive Development Study

Donald J Hagler Jr  1 SeanN Hatton  2 M Daniela Cornejo  2 Carolina Makowski  3 Damien A Fair  4 Anthony Steven Dick  5 Matthew T Sutherland  5 B J Casey  6 Deanna M Barch  7 Michael P Harms  7 Richard Watts  6 James M Bjork  8 Hugh P Garavan  9 Laura Hilmer  2 Christopher J Pung  2 Chelsea S Sicat  2 Joshua Kuperman  2 Hauke Bartsch  2 Feng Xue  2 Mary M Heitzeg  10 Angela R Laird  5 Thanh T Trinh  2 Raul Gonzalez  5 Susan F Tapert  2 Michael C Riedel  5 Lindsay M Squeglia  11 Luke W Hyde  10 Monica D Rosenberg  6 Eric A Earl  4 Katia D Howlett  12 Fiona C Baker  13 Mary Soules  10 Jazmin Diaz  2 Octavio Ruiz de Leon  2 Wesley K Thompson  2 Michael C Neale  8 Megan Herting  14 Elizabeth R Sowell  15 Ruben P Alvarez  16 Samuel W Hawes  5 Mariana Sanchez  5 Jerzy Bodurka  17 Florence J Breslin  17 Amanda Sheffield Morris  17 Martin P Paulus  17 W Kyle Simmons  17 Jonathan R Polimeni  18 Andre van der Kouwe  18 Andrew S Nencka  19 Kevin M Gray  11 Carlo Pierpaoli  20 John A Matochik  21 Antonio Noronha  21 Will M Aklin  12 Kevin Conway  12 Meyer Glantz  12 Elizabeth Hoffman  12 Roger Little  12 Marsha Lopez  12 Vani Pariyadath  12 Susan Rb Weiss  12 Dana L Wolff-Hughes  22 Rebecca DelCarmen-Wiggins  23 Sarah W Feldstein Ewing  4 Oscar Miranda-Dominguez  4 Bonnie J Nagel  4 Anders J Perrone  4 Darrick T Sturgeon  4 Aimee Goldstone  13 Adolf Pfefferbaum  13 Kilian M Pohl  13 Devin Prouty  13 Kristina Uban  24 Susan Y Bookheimer  25 Mirella Dapretto  25 Adriana Galvan  25 Kara Bagot  2 Jay Giedd  2 M Alejandra Infante  2 Joanna Jacobus  2 Kevin Patrick  2 Paul D Shilling  2 Rahul Desikan  26 Yi Li  26 Leo Sugrue  26 Marie T Banich  27 Naomi Friedman  27 John K Hewitt  27 Christian Hopfer  27 Joseph Sakai  27 Jody Tanabe  27 Linda B Cottler  28 Sara Jo Nixon  28 Linda Chang  29 Christine Cloak  29 Thomas Ernst  29 Gloria Reeves  29 David N Kennedy  30 Steve Heeringa  10 Scott Peltier  10 John Schulenberg  10 Chandra Sripada  10 Robert A Zucker  10 William G Iacono  31 Monica Luciana  31 Finnegan J Calabro  32 Duncan B Clark  32 David A Lewis  32 Beatriz Luna  32 Claudiu Schirda  32 Tufikameni Brima  33 John J Foxe  33 Edward G Freedman  33 Daniel W Mruzek  33 Michael J Mason  34 Rebekah Huber  35 Erin McGlade  35 Andrew Prescot  35 Perry F Renshaw  35 Deborah A Yurgelun-Todd  35 Nicholas A Allgaier  9 Julie A Dumas  9 Masha Ivanova  9 Alexandra Potter  9 Paul Florsheim  36 Christine Larson  36 Krista Lisdahl  36 Michael E Charness  37 Bernard Fuemmeler  8 John M Hettema  8 Hermine H Maes  8 Joel Steinberg  8 Andrey P Anokhin  7 Paul Glaser  7 Andrew C Heath  7 Pamela A Madden  7 Arielle Baskin-Sommers  6 R Todd Constable  6 Steven J Grant  12 Gayathri J Dowling  12 Sandra A Brown  2 Terry L Jernigan  2 Anders M Dale  2
Affiliations

Image processing and analysis methods for the Adolescent Brain Cognitive Development Study

Donald J Hagler Jr et al. Neuroimage. .

Abstract

The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing, nationwide study of the effects of environmental influences on behavioral and brain development in adolescents. The main objective of the study is to recruit and assess over eleven thousand 9-10-year-olds and follow them over the course of 10 years to characterize normative brain and cognitive development, the many factors that influence brain development, and the effects of those factors on mental health and other outcomes. The study employs state-of-the-art multimodal brain imaging, cognitive and clinical assessments, bioassays, and careful assessment of substance use, environment, psychopathological symptoms, and social functioning. The data is a resource of unprecedented scale and depth for studying typical and atypical development. The aim of this manuscript is to describe the baseline neuroimaging processing and subject-level analysis methods used by ABCD. Processing and analyses include modality-specific corrections for distortions and motion, brain segmentation and cortical surface reconstruction derived from structural magnetic resonance imaging (sMRI), analysis of brain microstructure using diffusion MRI (dMRI), task-related analysis of functional MRI (fMRI), and functional connectivity analysis of resting-state fMRI. This manuscript serves as a methodological reference for users of publicly shared neuroimaging data from the ABCD Study.

Keywords: ABCD; Adolescent; Data sharing; Magnetic resonance imaging; Processing pipeline.

PubMed Disclaimer

Conflict of interest statement

All other authors report no potential conflicts of interest.

Figures

Figure 1.
Figure 1.. Processing pipeline diagrams.
A. Modality-specific processing steps for bias field, distortion, and/or motion correction. B. Processing pipeline input and outputs.
Figure 2.
Figure 2.. Bias field correction for sMRI.
Sagittal, T1w images for an example ABCD Study participant from a GE scanner, with and without bias field correction. A. Uncorrected image showing bright occipital cortex. B. N3 corrected image with white matter and pial surfaces overlayed in yellow and red, respectively. C. White matter bias corrected (wmbc) image.
Figure 3.
Figure 3.. sMRI and dMRI data flow chart.
Initial stages (green) have no filtering. All scanning sessions receive a radiological review; users may optionally exclude participants with incidental findings. Available MRI events pass through mandatory filtering (red) that excludes incomplete or very poor-quality data from the creation of minimally processed data. ROI-based analyses result in the tabulated data (white). The DAIC recommends (blue) that these data should be further filtered to exclude subjects with unacceptable FreeSurfer reconstruction.
Figure 4.
Figure 4.. fMRI data flow chart.
Available MRI events (green) pass through mandatory filtering (red) that excludes incomplete or very poor-quality data from the creation of minimally processed data. ROI-based timeseries analyses result in the tabulated data (white). The DAIC recommend (blue) that data should be further filtered to exclude subjects with poor behavioral performance, excessive head motion, or unacceptable FreeSurfer reconstruction.
Figure 5.
Figure 5.. Differences between scanners.
A–C. sMRI-derived measures. A. T1w gray/white contrast averaged across bilateral cortical surface. B. Cortical thickness averaged across bilateral cortical surface. C. Total cortical area. D–F. dMRI-derived measures averaged within AllFibers AtlasTrack ROI. D. DTIIS FA. E. DTIIS MD. F. RSI ND. G–I. EN-back task fMRI differences between scanners. G. Voxel-wise smoothness (mm FWHM) for EN-back task fMRI data. H. tSNR for EN-back task fMRI data. I. GLM-derived t-statistics calculated for middle frontal gyrus Destrieux parcel, 2-back vs fixation contrast. J–L. rs-fMRI derived measures. J. Mean motion: average FD for rs-fMRI scans. K. Number of time points remaining for analysis after motion-censoring for rs-fMRI scans. L. Within-network correlation for default network. Tukey boxplots represent medians, quartiles, and outliers (for additional details, see Statistical Analysis section within Supplementary Information). The numbers of participants included in the analysis for each plot are shown in gray.

References

    1. Alexander AL, Lee JE, Lazar M, Field AS, 2007. Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–329. - PMC - PubMed
    1. Andersson JL, Skare S, Ashburner J, 2003. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870–888. - PubMed
    1. Andersson JLR, Sotiropoulos SN, 2016. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078. - PMC - PubMed
    1. Ashburner J, Friston KJ, 2000. Voxel-based morphometry--the methods. Neuroimage 11, 805–821. - PubMed
    1. Bagot KS, Matthews SA, Mason M, Squeglia LM, Fowler J, Gray K, Herting M, May A, Colrain I, Godino J, Tapert S, Brown S, Patrick K, 2018. Current, future and potential use of mobile and wearable technologies and social media data in the ABCD study to increase understanding of contributors to child health. Dev Cogn Neurosci 32, 121–129. - PMC - PubMed

Publication types

MeSH terms

Grants and funding