Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 15;19(1):195.
doi: 10.1186/s12883-019-1422-3.

The prevalence of obstructive sleep apnea in mild cognitive impairment: a systematic review

Affiliations

The prevalence of obstructive sleep apnea in mild cognitive impairment: a systematic review

Talha Mubashir et al. BMC Neurol. .

Abstract

Background: Previous studies have shown that obstructive sleep apnea (OSA) is associated with a higher risk of cognitive impairment or dementia in the elderly, leading to deleterious health effects and decreasing quality of life. This systematic review aims to determine the prevalence of OSA in patients with mild cognitive impairment (MCI) and examine whether an association between OSA and MCI exists.

Methods: We searched Medline, PubMed, Embase, Cochrane Central, Cochrane Database of Systematic Reviews, PsychINFO, Scopus, the Web of Science, ClinicalTrials.gov and the International Clinical Trials Registry Platform for published and unpublished studies. We included studies in adults with a diagnosis of MCI that reported on the prevalence of OSA. Two independent reviewers performed the abstract and full-text screening, data extraction and the study quality critical appraisal.

Results: Five studies were included in the systematic review. Overall, OSA prevalence rates in patients with MCI varied between 11 and 71% and were influenced by OSA diagnostic methods and patient recruitment locations (community or clinic based). Among studies using the following OSA diagnostic measures- self-report, Home Sleep Apnea Testing, Berlin Questionnaire and polysomnography- the OSA prevalence rates in MCI were 11, 27, 59 and 71%, respectively. In a community-based sample, the prevalence of OSA in patients with and without MCI was 27 and 26%, respectively.

Conclusions: Based on limited evidence, the prevalence of OSA in patients with MCI is 27% and varies based upon OSA diagnostic methods and patient recruitment locations. Our findings provide an important framework for future studies to prospectively investigate the association between OSA and MCI among larger community-based cohorts and implement a standardized approach to diagnose OSA in memory clinics.

Prospero registration: CRD42018096577.

Keywords: Mild cognitive impairment; Obstructive sleep apnea; Prevalence.

PubMed Disclaimer

Conflict of interest statement

J.W- Reports grants from the Ontario Ministry of Health and Long-Term Care, Anesthesia Patient Safety Foundation and Acacia Pharma outside of the submitted work.

F.C- Reports research support from the Ontario Ministry of Health and Long-Term Care, University Health Network Foundation, Acacia Pharma, Medtronics grants to institution outside of the submitted work, Up-to-date royalties, STOP-Bang proprietary to University Health Network.

All other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram of study selection process. Abbreviations: WHO ICTRP = World Health Organization International Clinical Trials Registry Platform
Fig. 2
Fig. 2
Reported OSA prevalence (%) in patients with MCI and Controls. Abbreviations: CL = clinic; COM = community; HNR = Heinz Nixdorf Recall; MCI = mild cognitive impairment; PSG = polysomnography. aIncludes patients recruited from neurology clinics. bIncludes patients recruited from a public health center. cIncludes patients recruited from HNR cohort (community-based sample). dIncludes patients recruited from multiple clinics, including neurology clinics, OSA risk in MCI vs. Controls [OR 3.61 (2.09–6.22), p <  0.0001]

References

    1. Yaffe K, Laffan AM, Harrison SL, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011;306(6):613–619. doi: 10.1001/jama.2011.1115. - DOI - PMC - PubMed
    1. Osorio RS, Gumb T, Pirraglia E, et al. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology. 2015;84(19):1964–1971. doi: 10.1212/WNL.0000000000001566. - DOI - PMC - PubMed
    1. Gerstenecker A, Mast B. Mild cognitive impairment: a history and the state of current diagnostic criteria. Int Psychogeriatr. 2015;27(2):199–211. doi: 10.1017/S1041610214002270. - DOI - PubMed
    1. Petersen RC, Smith GE, Waring S, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–308. doi: 10.1001/archneur.56.3.303. - DOI - PubMed
    1. Petersen RC, Doody R, Kurz A, et al. Current Concepts in Mild Cognitive Impairment. Arch Neurol. 2001;58:1985–1992. doi: 10.1001/archneur.58.12.1985. - DOI - PubMed

Publication types