Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov;255(5 Pt 2):F962-9.
doi: 10.1152/ajprenal.1988.255.5.F962.

Hypotonic cell volume regulation in mouse medullary thick ascending limb: effects of ADH

Affiliations

Hypotonic cell volume regulation in mouse medullary thick ascending limb: effects of ADH

S C Hebert et al. Am J Physiol. 1988 Nov.

Abstract

Differential interference contrast microscopy was used in combination with standard electrophysiological techniques in the in vitro perfused mouse medullary thick ascending limb of Henle's loop (MAL) to evaluate the cell volume responses of this nephron segment during and following exposure to hypotonic media and to assess the role of antidiuretic hormone (ADH) and net salt absorption on the associated volume regulatory processes. Reductions in extracellular osmolality by 50 mosmol resulted in rapid increases in cell volume of approximately 20% with or without exposure to ADH. Cell volume recovery (volume-regulatory decrease, VRD) was much slower in the presence, than in the absence, of ADH. This hormone-mediated impairment of the VRD response could be overcome by the abolishment of net salt absorption with luminal 10(-4) M furosemide. An inverse linear relationship was observed between the rates of net salt absorption and VRD, indicating a finite ability of this nephron segment to enhance solute exit mechanisms whether induced by increases in transcellular traffic or by hypotonic cell swelling. Finally, returning to the isotonic media resulted in cell shrinkage under all conditions [+/- ADH and +(ADH and furosemide)] consistent with cell solute loss mediating VRD. However, recovery of cell volume back to the initial isotonic control value [post-VRD volume regulatory increase (VRI)] was only observed in ADH-treated tubules and was independent of net salt absorption. The post-VRD VRI response could be abolished by isohydric CO2-HCO3- removal or by addition of 10(-4) M amiloride to the peritubular medium. The latter results suggest that parallel Na+-H+ and Cl- -HCO3- exchangers located in basolateral membranes mediate the post-VRD VRI response.

PubMed Disclaimer

Publication types

LinkOut - more resources