Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 4;11(35):31575-31584.
doi: 10.1021/acsami.9b08407. Epub 2019 Aug 26.

Lead-Free Halide Perovskites and Perovskite Variants as Phosphors toward Light-Emitting Applications

Affiliations

Lead-Free Halide Perovskites and Perovskite Variants as Phosphors toward Light-Emitting Applications

Jiajun Luo et al. ACS Appl Mater Interfaces. .

Abstract

Lead halide perovskites have attracted tremendous research interests in the light-emitting field because of their high defect tolerance, solution processability, tunable spectrum, and efficient emission. In terms of luminescence types, both the narrowband emission derived from free-exciton (FE) and broadband white light emission from self-trapped exciton (STE) show great advantages in light-emitting applications. Despite the fascinating characteristics, their commercialization still suffers from the presence of toxic lead (Pb) and unsatisfactory stability. In this spotlight, we mainly focus on the lead-free candidates as phosphors for possible light-emitting applications. Thanks to the chemical diversity of metal halide perovskites and perovskite variants, many excellent lead-free light-emitting materials have recently been synthesized and characterized. We first classify these materials into three types according to material structures, including (1) double perovskites A2B(I)B(III)X6, (2) vacancy ordered perovskites A2B(IV)X6, (3) miscellaneous perovskite variants or halide semiconductors, which refer to halides without clear relation to the perovskite structure. We then highlight the importance of electronic dimensionality, defect passivation, and impurity doping in developing highly efficient perovskite-based emitters. We also discuss their applications in white light-emitting diodes (W-LED). Further challenges toward practical applications and potential applications are also included in a section on outlook and future challenges.

Keywords: defects passivation; electronic dimensionality; lead-free; perovskite; white light-emitting diodes.

PubMed Disclaimer

LinkOut - more resources