Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep;45(6):593-603.
doi: 10.1055/s-0039-1693476. Epub 2019 Aug 20.

Microvesicles and Cancer Associated Thrombosis

Affiliations
Review

Microvesicles and Cancer Associated Thrombosis

Romaric Lacroix et al. Semin Thromb Hemost. 2019 Sep.

Abstract

Microvesicles (MVs) are small membrane enclosed structures released into the extracellular space by virtually all cell types. Their composition varies according to the cell origin and the stimulus which caused their formation. They harbor functional molecules and participate in intercellular communication. Endothelium, inflammatory cells, and cancer cells produce procoagulant MVs which contribute to cancer-associated thrombosis (CAT) in animal models. The tissue factor (TF) conveyed by these MVs was shown to play a key role in different animal models of experimental CAT. Alternatively, other molecular mechanisms involving polyphosphates or phosphatidylethanolamine could also be involved. In clinical practice, an association between an increase in the number of TF-positive or the procoagulant activity of these MVs and the occurrence of CAT has indeed been demonstrated in pancreatic-biliary cancers, suggesting that they could behave as a biomarker predictive for CAT. However, to date, this association was not confirmed in other types of cancer. Potential causes explaining this limited associated between MVs and CAT are (1) the diversity of mechanisms associating MVs and different types of cancer; (2) a more complex role of MVs in hemostasis integrating their anticoagulant and fibrinolytic activity; and (3) the lack of sensitivity, reproducibility, and standardization of current methodologies permitting measurement of MVs. Each of these hypotheses constitutes an interesting exploration path for a future reassessment of the clinical interest of the MVs in CAT.

PubMed Disclaimer

Conflict of interest statement

R.L. reports grants from Stago/BioCytex, during the conduct of the study; in addition, R.L. has a patent Microvesicle Plasmin generation licensed to Stago. The other authors have no conflict of interest to disclose.