Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Aug;66(8):853-61.
doi: 10.1139/o88-097.

Three types of stereospecificity and the kinetic deuterium isotope effect in the oxidative deamination of dopamine as catalyzed by different amine oxidases

Affiliations
Comparative Study

Three types of stereospecificity and the kinetic deuterium isotope effect in the oxidative deamination of dopamine as catalyzed by different amine oxidases

P H Yu. Biochem Cell Biol. 1988 Aug.

Abstract

When the stereospecifically deuterated dopamine enantiomers, (R)- and (S)-[alpha-2H1]dopamine, are incubated with amine oxidases, the deuterium atom may be either retained to form monodeuterated 3,4-dihydroxyphenylacetaldehyde, or eliminated to produce the nondeuterated or protio-aldehyde product. These two aldehydes can be separated from one another and identified by high-performance liquid chromatography with electrochemical detection. Three types of stereospecific abstraction of a hydrogen from the alpha-carbon of dopamine during deamination have been observed. In the first type, the pro-R hydrogen is removed from the alpha-carbon. Enzymes in this category are mitochondrial monoamine oxidases A and B, as isolated from different tissues and species. The second type of deamination involves the abstraction of pro-S hydrogen from the alpha-carbon of dopamine. Soluble enzymes, such as rat aorta benzylamine oxidase or diamine oxidase from hog kidney and pea seedling, have been found to belong to this group. Bovine plasma amine oxidase exhibits the third type of deamination where no absolute stereospecificity is required. This enzyme catalyzes the oxidation of either (S)- or (R)-[alpha-2H1]dopamine, preferably breaking the C-H bond rather than the C-2H bond in both cases. The kinetic deuterium isotope effect during the deamination of dopamine catalyzed by the different amine oxidases varies greatly; VH/VD ranges from 1.5 to 5.5. The high magnitude of the isotope effect suggests that hydrogen abstraction may be the rate-limiting step (i.e., in reactions catalyzed by benzylamine oxidase and monoamine oxidase). When the isotope effect is low (i.e., for diamine oxidases from hog kidney or pea seedling), it is uncertain if the breaking of the bond is rate limiting.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources