Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 25;3(2):146-150.
doi: 10.22603/ssrr.2018-0020. eCollection 2019 Apr 27.

Dash-Associated Spondylolysis Hypothesis

Affiliations

Dash-Associated Spondylolysis Hypothesis

Tsuyoshi Goto et al. Spine Surg Relat Res. .

Abstract

Introduction: In past biomechanical studies, repetitive motion of lumbar extension, rotation, or a combination of both, frequently seen in batting or pitching practice in baseball, shooting practice in soccer, and spiking practice in volleyball, have been considered important risk factors of lumbar spondylolysis. However, clinically, these have been identified in many athletes performing on a running track or on the field, which requires none of the practices described above. The purpose of this study was to verify how much impact running has on the pathologic mechanism of lumbar spondylolysis.

Methods: In study 1, 89 consecutive pediatric patients diagnosed with lumbar spondylolysis at a single outpatient clinic between January 2012 and February 2017 were retrospectively analyzed. In study 2, motion analysis was performed on 17 male volunteers who had played on a soccer team without experiencing low back pain or any type of musculoskeletal injury. A Vicon motion capture system was used to evaluate four movements: maximal effort sprint (Dash), comfortable running (Jog), instep kick (Shoot), and inside kick (Pass).

Results: In study 1, 13 of the 89 patients with lumbar spondylolysis were track and field athletes. In study 2, motion analysis revealed that the hip extension angle, spine rotation angle, and hip flexion moment were similar in Dash and Shoot during the maximum hip extension phase. The pelvic rotation angle was significantly greater in the kicking conditions than in the running conditions.

Conclusions: Kinematically and kinetically, the spinopelvic angles in Dash were considered similar to those in Shoot. Dash could cause mechanical stress at the pars interarticularis of the lumbar spine, similar to that caused by Shoot, thus leading to spondylolysis.

Keywords: Dash; Lumbar spondylolysis; Three-dimensional analysis; Track and field athlete.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: The authors declare that there are no relevant conflicts of interest.

Figures

Figure 1.
Figure 1.
Mean values for movement of the hip, pelvis, and spine (°) during tasks. *P<0.05 indicates a statistically significant difference between conditions.
Figure 2.
Figure 2.
Mean movement (°) values of for hip moment and ground reaction force during tasks. *P<0.05 indicates a statistically significant difference between conditions.

References

    1. Wiltse LL, Widell EH Jr, Jackson DW. Fatigue fracture: the basic lesion in isthmic spondylolisthesis. J Bone Joint Surg Am. 1975;57(1):17-22. - PubMed
    1. Sakai T, Yamada H, Nakamura T, et al. Lumbar spinal disorders in patients with athetoid cerebral palsy: a clinical and biomechanical study. Spine. 2006;31(3):66-70. - PubMed
    1. Terai T, Sairyo K, Goel VK, et al. Spondylolysis originates in the ventral aspect of the pars interarticularis: a clinical and biomechanical study. J Bone Joint Surg Br. 2010;92(8):1123-7. - PubMed
    1. Sairyo K, Katoh S, Sasa T, et al. Athletes with unilateral spondylolysis are at risk of stress fracture at the contralateral pedicle and pars interarticularis: a clinical and biomechanical study. Am J Sports Med. 2005;33(4):583-90. - PubMed
    1. Sakai T, Sairyo K, Suzue N, et al. Incidence and etiology of lumbar spondylolysis: review of the literature. J Orthop Sci. 2010;15(3):281-8. - PubMed

LinkOut - more resources