Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 24;13(9):10456-10468.
doi: 10.1021/acsnano.9b04257. Epub 2019 Aug 27.

Phonon Anharmonicity in Few-Layer Black Phosphorus

Affiliations

Phonon Anharmonicity in Few-Layer Black Phosphorus

Damien Tristant et al. ACS Nano. .

Abstract

We report a temperature-dependent Raman spectroscopy study of few-layer black phosphorus (BP) with varied incident polarization and sample thickness. The Raman-active modes Ag1, B2g, and Ag2 exhibit a frequency downshift, while their line width tends to increase with increasing temperature. To understand the details of these phenomena, we perform first-principles density functional theory calculations on freestanding monolayer BP. The effect of thermal expansion is included by constraining the temperature-dependent lattice constant. The study of the temperature-induced shift of the phonon frequencies is carried out using ab initio molecular dynamics simulations. The normal-mode frequencies are calculated by identifying the peak positions from the magnitude of the Fourier transform of the total velocity autocorrelation. Anharmonicity induces a frequency shift for each individual mode, and the three- and four-phonon process coefficients are extracted. These results are compared with those obtained from many-body perturbation theory, giving access to phonon lifetimes and lattice thermal conductivity. We establish that the frequency downshift is primarily due to phonon-phonon scattering while thermal expansion only contributes indirectly by renormalizing the phonon-phonon scattering. Overall, the theoretical results are in excellent agreement with experiment, thus showing that controlling phonon scattering in BP could result in better thermoelectric devices or transistors that dissipate heat more effectively when confined to the nanoscale.

Keywords: Raman spectroscopy; anharmonicity; black phosphorus; first-principles; frequency shift; phonon lifetime; phonon−phonon coupling.

PubMed Disclaimer

LinkOut - more resources