Synthetic methylotrophy: Strategies to assimilate methanol for growth and chemicals production
- PMID: 31437746
- DOI: 10.1016/j.copbio.2019.07.001
Synthetic methylotrophy: Strategies to assimilate methanol for growth and chemicals production
Abstract
Methanol is an attractive and broadly available substrate for large-scale bioproduction of fuels and chemicals. It contains more energy and electrons per carbon than carbohydrates and can be cheaply produced from natural gas. Synthetic methylotrophy refers to the development of non-native methylotrophs such as Escherichia coli and Corynebacterium glutamicum to utilize methanol as a carbon source. Here, we discuss recent advances in engineering these industrial hosts to assimilate methanol for growth and chemicals production through the introduction of the ribulose monophosphate (RuMP) cycle. In addition, we present novel strategies based on flux coupling and adaptive laboratory evolution to engineer new strains that can grow exclusively on methanol.
Copyright © 2019 Elsevier Ltd. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
