Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct:75:105818.
doi: 10.1016/j.intimp.2019.105818. Epub 2019 Aug 19.

SDF-1/CXCR4 axis facilitates myeloid-derived suppressor cells accumulation in osteosarcoma microenvironment and blunts the response to anti-PD-1 therapy

Affiliations
Free article

SDF-1/CXCR4 axis facilitates myeloid-derived suppressor cells accumulation in osteosarcoma microenvironment and blunts the response to anti-PD-1 therapy

Kuo Jiang et al. Int Immunopharmacol. 2019 Oct.
Free article

Abstract

Immune checkpoint inhibitors, such as anti-PD-1/PD-L1, are a novel class of inhibitors that function as a tumor suppressing factor via modulation of immune cell-tumor cell interaction. To date, PD-1/PD-L1 inhibitors have been approved for the treatment of specific types of tumors and obtained good clinical efficacy. However, patients with osteosarcoma showed poor response to anti-PD-1/PD-L1 therapy, the mechanism of which is not well understood. In this study, we found that osteosarcoma tissues were heavily infiltrated by myeloid-derived suppressor cells (MDSCs) which could inhibit cytotoxicity T cell (CTL) expansion. Further study revealed that the vast majority of tumor-infiltrating MDSCs were CXCR4 positive and could migrate toward an SDF-1 gradient. The binding of SDF-1 to its receptor CXCR4 results in the activation of downstream AKT pathway that mediates reduced apoptosis of MDSCs. We also demonstrated that AMD3100, a CXCR4 antagonist, has a synergistic effect with anti-PD-1 antibody in tumor treatment in a murine model of osteosarcoma. These findings provide the basis for establishing CXCR4 antagonist and PD-1/PD-L1 inhibitors co-administration as a novel therapeutic regimen for patients with osteosarcoma and hold great promise for improving the therapeutic effect of osteosarcoma.

Keywords: CXCR4; Immunotherapy; MDSCs; osteosarcoma.

PubMed Disclaimer

MeSH terms