Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 22;19(1):829.
doi: 10.1186/s12885-019-6015-4.

Reduction of metastatic potential by inhibiting EGFR/Akt/p38/ERK signaling pathway and epithelial-mesenchymal transition after carbon ion exposure is potentiated by PARP-1 inhibition in non-small-cell lung cancer

Affiliations

Reduction of metastatic potential by inhibiting EGFR/Akt/p38/ERK signaling pathway and epithelial-mesenchymal transition after carbon ion exposure is potentiated by PARP-1 inhibition in non-small-cell lung cancer

Priyanka Chowdhury et al. BMC Cancer. .

Abstract

Background: Carbon ion (12C) radiotherapy is becoming very promising to kill highly metastatic cancer cells keeping adjacent normal cells least affected. Our previous study shows that combined PARP-1 inhibition with 12C ion reduces MMP-2,-9 synergistically in HeLa cells but detailed mechanism are not clear. To understand this mechanism and the rationale of using PARP-1 inhibitor with 12C ion radiotherapy for better outcome in controlling metastasis, we investigated metastatic potential in two non-small cell lung cancer (NSCLC) A549 and H1299 (p53-deficient) cells exposed with 12C ion in presence and absence of PARP-1 inhibition using siRNA or olaparib.

Methods: We monitored cell proliferation, in-vitro cell migration, wound healing, expression and activity of MMP-2, - 9 in A549 and p53-deficient H1299 cell lines exposed with 12C ion with and without PARP-1 inhibitor olaparib/DPQ. Expression and phosphorylation of NF-kB, EGFR, Akt, p38, ERK was also observed in A549 and H1299 cells exposed with 12C ion with and without PARP-1 inhibition using siRNA or olaparib. We also checked expression of few marker genes involved in epithelial-mesenchymal transition (EMT) pathways like N-cadherin, vimentin, anillin, claudin-1, - 2 in both NSCLC. To determine the generalized effect of 12C ion and olaparib in inhibition of cell's metastatic potential, wound healing and activity of MMP-2, - 9 was also studied in HeLa and MCF7 cell lines after 12C ion exposure and in combination with PARP-1 inhibitor olaparib.

Results: Our experiments show that 12C ion and PARP-1 inhibition separately reduces cell proliferation, cell migration, wound healing, phosphorylation of EGFR, Akt, p38, ERK resulting inactivation of NF-kB. Combined treatment abolishes NF-kB expression and hence synergistically reduces MMP-2, - 9 expressions. Each single treatment reduces N-cadherin, vimentin, anillin but increases claudin-1, - 2 leading to suppression of EMT process. However, combined treatment synergistically alters these proteins to suppress EMT pathways significantly.

Conclusion: The activation pathways of transcription of MMP-2,-9 via NF-kB and key marker proteins in EMT pathways are targeted by both 12C ion and olaparib/siRNA. Hence, 12C ion radiotherapy could potentially be combined with olaparib as chemotherapeutic agent for better control of cancer metastasis.

Keywords: Carbon ion exposure; Epithelial-mesenchymal transition (EMT); Matrix metalloproteinases (MMPs); Metastatic potential; Non-small-cell lung cancer; PARP-1.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
a Survival fraction (SF) of A549 and H1299 cells exposed with 12C ion with and without olaparib (O). The survival fraction (SF) of olaparib treated cells at 0 Gy was corrected to 1 and all the olaparib treated cells were normalized accordingly. b represent the same data where survival fraction of untreated control was assumed as 1 and of all other treated cells (either 12C ion or olaparib or combined) normalized accordingly. c Time course cell proliferation in A549 cells after treatment with PARP-1 inhibitor DPQ (D) and olaparib (O) separately and in combination with 12C ion exposure (0–4 Gy). Each bar represents mean cell proliferation ± standard deviation obtained from three independent experiments. All the differences with respect to control are significant and p-values at each dose were p ≤ 0.001 in each cell-type
Fig. 2
Fig. 2
Cell migration and MMP-2, − 9 activity in A549 and H1299 cells. Percent cell migration after PARP-1 inhibition with olaparib (O), DPQ (D) and combined with 12C ion in A549 (a) and H1299 (b) cells. Each bar with different pattern represents mean percent cell migration with standard deviation obtained from three independent experiments in triplicates. c-d-e Typical photograph of gelatin zymogram to determine MMP-2 (72 kDa) and MMP-9 (92 kDa) activity after exposure with 12C in presence and absence of DPQ (d) (c) or olaparib (O) (d) in A549 cells and H1299 (e) cells
Fig. 3
Fig. 3
Expression of MMP-2 and MMP-9 in A549 and H1299 cells treated with 12C with and without olaparib (O). a Relative mRNA expression of MMP-2 and MMP-9 in A549 cells after 24 h treatment as determined by Real Time PCR. Each bar represents mean expression ± standard deviation obtained from three independent experiments. All the differences with respect to control are significant and p-values at each dose was p ≤ 0.001 in each cell-type. b-c & d-e Typical western blot to determine expression of MMP-2 and MMP-9 from whole cell lysate in b (A549) & d (H1299) and their respective secretion in culture medium in c (A549) & e (H1299). f,g, h & i Relative expression as measured in fold of MMP-2 and MMP-9 from whole cell lysate f (A549) & h (H1299) and their respective secretion in culture medium in g (A549) &  i (H1299)
Fig. 4
Fig. 4
Expression and phosphorylation status of the proteins involved in the upstream signaling pathway in the transcriptional regulation of MMP-2,-9 in H1299 (left panel) and A549 (right panel) cells after 12C ion exposure with and without olaparib (O) or siRNA against PARP-1. The bar graphs in each panel represents the quantitative analysis of the proteins as obtained from densitometric analysis of the bands from three independent experiments using imageJ
Fig. 5
Fig. 5
Expression of few EMT markers after 12C ion exposure with and without olaparib or siRNA. a Typical western blots of N-cadherin and vimentin in A549 (left) and H1299 (right) cells. b & c Relative expression of N-cadherin and vimentin in A549 and H1299 cells as measured in fold. d, e, f & g Expression of the EMT markers N-cadherin, anillin, claudin-1 and claudin-2 respectively by Real Time PCR after normalizing with GAPDH in A549 cell line. All the differences with respect to control are significant and p-values at each dose were p ≤ 0.001
Fig. 6
Fig. 6
The cartoon picture represents the mechanisms of inhibition of in-vitro metastatic potential after single and combined treatment. The downward or upward arrows with three different colours beside the protein represent down-regulation or up-regulation respectively of that protein for only PARP-1 inhibition (red), only 12C ion exposure (green) and combined treatment (blue). Phosphorylation of each protein is denoted by P within oval shape attached with the respective protein. The down arrow of different colours beside P denotes reduction of phosphorylation of the respective proteins after different treatments

References

    1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E386. - PubMed
    1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29 Available from: http://onlinelibrary.wiley.com/doi/10.3322/caac.21208/full%5Cnhttps://www.ncbi.nlm.nih.gov/pubmed/24399786. - DOI - PubMed
    1. Zhou YC, Liu JY, Li J, Zhang J, Xu YQ, Zhang HW, et al. Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial-mesenchymal transition. Int J Radiat Oncol Biol Phys. 2011;81(5):1530–1537. - PubMed
    1. Ho JN, Kang GY, Lee SS, Kim J, Bae IH, Hwang SG, et al. Bcl-XLand STAT3 mediate malignant actions of γ-irradiation in lung cancer cells. Cancer Sci. 2010;101(6):1417–1423. - PMC - PubMed
    1. Loeffier JS, Durante M. Charged particle therapy- optimization, challenges and future directions. Nat Rev Clin Oncol. 2013;10:411–424. - PubMed

MeSH terms

Substances