Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019:2035:1-24.
doi: 10.1007/978-1-4939-9666-7_1.

G-Quadruplex DNA and RNA

Affiliations

G-Quadruplex DNA and RNA

Danzhou Yang. Methods Mol Biol. 2019.

Abstract

G-quadruplexes (G4s) have become one of the most exciting nucleic acid secondary structures. A noncanonical, four-stranded structure formed in guanine-rich DNA and RNA sequences, G-quadruplexes can readily form under physiologically relevant conditions and are globularly folded structures. DNA is widely recognized as a double-helical structure essential in genetic information storage. However, only ~3% of the human genome is expressed in protein; RNA and DNA may form noncanonical secondary structures that are functionally important. G-quadruplexes are one such example which have gained considerable attention for their formation and regulatory roles in biologically significant regions, such as human telomeres, oncogene-promoter regions, replication initiation sites, and 5'- and 3'-untranslated region (UTR) of mRNA. They are shown to be a regulatory motif in a number of critical cellular processes including gene transcription, translation, replication, and genomic stability. G-quadruplexes are also found in nonhuman genomes, particularly those of human pathogens. Therefore, G-quadruplexes have emerged as a new class of molecular targets for drug development. In addition, there is considerable interest in the use of G-quadruplexes for biomaterials, biosensors, and biocatalysts. The First International Meeting on Quadruplex DNA was held in 2007, and the G-quadruplex field has been growing dramatically over the last decade. The methods used to study G-quadruplexes have been essential to the rapid progress in our understanding of this exciting nucleic acid secondary structure.

Keywords: Cancer; DNA; DNA damage; Drug target; G-quadruplexes; Human diseases; Human telomeres; Oncogene promoters; RNA; Replication; Transcription; Translation; UTR.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
(a) Schematic illustration of a G-tetrad, four guanine bases arranged in a square plane with Hoogsteen hydrogen bonding. Monovalent cations (K+ or Na+, shown as blue spheres) are required to stabilize G-quadruplexes by coordinating with the O6 atoms of the adjacent G-tetrad planes. (b) A schematic intermolecular (tetrameric) G-quadruplex with three G-tetrads. (c) Examples of intramolecular G-quadruplexes with different folding structures and loop conformations. The experimentally determined molecular structures are shown as examples for parallel, hybrid, and basket G-quadruplexes. (d) Example NMR molecular structures of ligand complexes with the c-MYC promoter G-quadruplex and the human telomeric G-quadruplex

References

    1. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. doi: 10.1038/nature11247. - DOI - PMC - PubMed
    1. Fry M. Tetraplex DNA and its interacting proteins. Front Biosci. 2007;12:4336–4351. doi: 10.2741/2391. - DOI - PubMed
    1. Oganesian L, Bryan TM. Physiological relevance of telomeric G-quadruplex formation: a potential drug target. BioEssays. 2007;29(2):155–165. doi: 10.1002/bies.20523. - DOI - PubMed
    1. Mendoza O, Bourdoncle A, Boule JB, Brosh RM, Jr, Mergny JL. G-quadruplexes and helicases. Nucleic Acids Res. 2016;44(5):1989–2006. doi: 10.1093/nar/gkw079. - DOI - PMC - PubMed
    1. Brázda V, Hároníková L, Liao JCC, Fojta M. DNA and RNA Quadruplex-binding proteins. Int J Molecul Sci. 2014;15(10):17493. doi: 10.3390/ijms151017493. - DOI - PMC - PubMed

Publication types

LinkOut - more resources