Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep:129:114-121.
doi: 10.1016/j.ijmedinf.2019.05.019. Epub 2019 May 30.

Extractive summarization of clinical trial descriptions

Affiliations

Extractive summarization of clinical trial descriptions

Christian Gulden et al. Int J Med Inform. 2019 Sep.

Abstract

Purpose: Text summarization of clinical trial descriptions has the potential to reduce the time required to familiarize oneself with the subject of studies by condensing long-form detailed descriptions to concise, meaning-preserving synopses. This work describes the process and quality of automatically generated summaries of clinical trial descriptions using extractive text summarization methods.

Methods: We generated a novel dataset from the detailed descriptions and brief summaries of trials registered on clinicaltrials.gov. We executed several text summarization algorithms on the detailed descriptions in this corpus and calculated the standard ROUGE metrics using the brief summaries included in the record as a reference. To investigate the correlation of these metrics with human sentiments, four reviewers assessed the content-completeness of the generated summaries and the helpfulness of both the generated and reference summaries via a Likert scale questionnaire.

Results: The filtering stages of the dataset generation process reduce the 277,228 trials registered on clinicaltrials.gov to 101,016 records usable for the summarization task. On average, the summaries in this corpus are 25% the length of the detailed descriptions. Of the evaluated text summarization methods, the TextRank algorithm exhibits the overall best performance with a ROUGE-1 F1 score of 0.3531, ROUGE-2 F1 score of 0.1723, and ROUGE-L F1 score of 0.3003. These scores correlate with the assessment of the helpfulness and content similarity by the human reviewers. Inter-rater agreement for the helpfulness and content similarity was slight and fair respectively (Fleiss' kappa of 0.12 and 0.22).

Conclusions: Extractive summarization is a viable tool for generating meaning-preserving synopses of detailed clinical trial descriptions. Further, the human evaluation has shown that the ROUGE-L F1 score is useful for rating the general quality of generated summaries of clinical trial descriptions in an automated way.

Keywords: Clinical trials; NLP; Text mining; Text summarization.

PubMed Disclaimer

Publication types

LinkOut - more resources