Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 1:183:110445.
doi: 10.1016/j.colsurfb.2019.110445. Epub 2019 Aug 17.

A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation

Affiliations

A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation

Mingle Cai et al. Colloids Surf B Biointerfaces. .

Abstract

Thermoset polymers synthesized from the polycondensation of glycerol with biocompatible diacids represent a promising class of absorbable materials for biomedical applications. However, the utility of these polymers for bone fixation devices is hampered due to the lack of mechanical strength. Herein we synthesized a high-strength thermoset polymer, poly(glycerol-succinate) (PGS), via a catalyst-free and solvent-free reaction. The bending strength of PGS reaches 122.01 ± 8.82 MPa, signifying its great potential for fixation devices. The degradation property of the polymer can be tuned by adjusting the monomer ratio and reaction time. Bone screws based on the PGS polymer were successfully manufactured using a lathe. In vitro evaluation showed the PGS polymer was able to well support cell adhesion and proliferation. In vivo evaluation using a rat subcutaneous implantation model showed that the inflammatory response to the polymer was mild. After the PGS screws were implanted in the rabbit femoral condyle for 12 weeks, micro-computed tomography (micro-CT) and histological analysis revealed that the screws achieved good osseointegration. Consequently, the polymer developed in current study can serve as internal fixation devices due to the proper mechanical strength, excellent biocompatibility, and feasibility of manufacturing screws.

Keywords: Bone screw; Fracture fixation; Osteointegration; Poly(glycerol-succinate); Thermoset polymer.

PubMed Disclaimer

LinkOut - more resources