Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for Nanomanipulation and Mechanical Characterization
- PMID: 31448892
- PMCID: PMC6753654
- DOI: 10.1021/acsami.9b09983
Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for Nanomanipulation and Mechanical Characterization
Abstract
Cell lipid membranes are the site of vital biological processes, such as motility, trafficking, and sensing, many of which involve mechanical forces. Elucidating the interplay between such bioprocesses and mechanical forces requires the use of tools that apply and measure piconewton-level forces, e.g., optical tweezers. Here, we introduce the combination of optical tweezers with free-standing lipid bilayers, which are fully accessible on both sides of the membrane. In the vicinity of the lipid bilayer, optical trapping would normally be impossible due to optical distortions caused by pockets of the solvent trapped within the membrane. We solve this by drastically reducing the size of these pockets via tuning of the solvent and flow cell material. In the resulting flow cells, lipid nanotubes are straightforwardly pushed or pulled and reach lengths above half a millimeter. Moreover, the controlled pushing of a lipid nanotube with an optically trapped bead provides an accurate and direct measurement of important mechanical properties. In particular, we measure the membrane tension of a free-standing membrane composed of a mixture of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) to be 4.6 × 10-6 N/m. We demonstrate the potential of the platform for biophysical studies by inserting the cell-penetrating trans-activator of transcription (TAT) peptide in the lipid membrane. The interactions between the TAT peptide and the membrane are found to decrease the value of the membrane tension to 2.1 × 10-6 N/m. This method is also fully compatible with electrophysiological measurements and presents new possibilities for the study of membrane mechanics and the creation of artificial lipid tube networks of great importance in intra- and intercellular communication.
Keywords: cell membrane; lipid bilayer; lipid nanotube; microdevice; surface tension.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






Similar articles
-
Hydrodynamic shear dissipation and transmission in lipid bilayers.Proc Natl Acad Sci U S A. 2021 May 25;118(21):e2100156118. doi: 10.1073/pnas.2100156118. Proc Natl Acad Sci U S A. 2021. PMID: 34021088 Free PMC article.
-
Stable Free-Standing Lipid Bilayer Membranes in Norland Optical Adhesive 81 Microchannels.Anal Chem. 2016 Aug 2;88(15):7466-70. doi: 10.1021/acs.analchem.6b00926. Epub 2016 Jul 12. Anal Chem. 2016. PMID: 27351219
-
Mechanical characterization of freestanding lipid bilayers with temperature-controlled phase.Soft Matter. 2024 Oct 30;20(42):8524-8537. doi: 10.1039/d4sm00706a. Soft Matter. 2024. PMID: 39417217
-
Forces of Change: Optical Tweezers in Membrane Remodeling Studies.J Membr Biol. 2022 Dec;255(6):677-690. doi: 10.1007/s00232-022-00241-1. Epub 2022 May 26. J Membr Biol. 2022. PMID: 35616705 Review.
-
Physical basis of some membrane shaping mechanisms.Philos Trans A Math Phys Eng Sci. 2016 Jul 28;374(2072):20160034. doi: 10.1098/rsta.2016.0034. Philos Trans A Math Phys Eng Sci. 2016. PMID: 27298443 Free PMC article. Review.
Cited by
-
Relationship between the Young's Moduli of Whole Microcapsules and Their Shell Material Established by Micromanipulation Measurements Based on Diametric Compression between Two Parallel Surfaces and Numerical Modelling.Micromachines (Basel). 2023 Jan 1;14(1):123. doi: 10.3390/mi14010123. Micromachines (Basel). 2023. PMID: 36677184 Free PMC article.
-
Probing mechanical interaction of immune receptors and cytoskeleton by membrane nanotube extraction.Sci Rep. 2023 Sep 20;13(1):15652. doi: 10.1038/s41598-023-42599-9. Sci Rep. 2023. PMID: 37730849 Free PMC article.
-
Characterizing microfluidic approaches for a fast and efficient reagent exchange in single-molecule studies.Sci Rep. 2020 Oct 22;10(1):18069. doi: 10.1038/s41598-020-74523-w. Sci Rep. 2020. PMID: 33093484 Free PMC article.
-
Hydrodynamic shear dissipation and transmission in lipid bilayers.Proc Natl Acad Sci U S A. 2021 May 25;118(21):e2100156118. doi: 10.1073/pnas.2100156118. Proc Natl Acad Sci U S A. 2021. PMID: 34021088 Free PMC article.
-
Biological lipid nanotubes and their potential role in evolution.Eur Phys J Spec Top. 2020;229(17):2843-2862. doi: 10.1140/epjst/e2020-000130-7. Epub 2020 Nov 16. Eur Phys J Spec Top. 2020. PMID: 33224439 Free PMC article. Review.
References
-
- Thottacherry J. J.; Kosmalska A. J.; Kumar A.; Vishen A. S.; Elosegui-Artola A.; Pradhan S.; Sharma S.; Singh P. P.; Guadamillas M. C.; Chaudhary N.; Vishwakarma R.; Trepat X.; del Pozo M. A.; Parton R. G.; Rao M.; Pullarkat P.; Roca-Cusachs P.; Mayor S. Mechanochemical Feedback Control of Dynamin Independent Endocytosis Modulates Membrane Tension in Adherent Cells. Nat. Commun. 2018, 9, 421710.1038/s41467-018-06738-5. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources