Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;471(10):1305-1316.
doi: 10.1007/s00424-019-02304-0. Epub 2019 Aug 21.

Isoproterenol enhances force production in mouse glycolytic and oxidative muscle via separate mechanisms

Affiliations

Isoproterenol enhances force production in mouse glycolytic and oxidative muscle via separate mechanisms

Sarah J Blackwood et al. Pflugers Arch. 2019 Oct.

Abstract

Fight or flight is a biologic phenomenon that involves activation of β-adrenoceptors in skeletal muscle. However, how force generation is enhanced through adrenergic activation in different muscle types is not fully understood. We studied the effects of isoproterenol (ISO, β-receptor agonist) on force generation and energy metabolism in isolated mouse soleus (SOL, oxidative) and extensor digitorum longus (EDL, glycolytic) muscles. Muscles were stimulated with isometric tetanic contractions and analyzed for metabolites and phosphorylase activity. Under conditions of maximal force production, ISO enhanced force generation markedly more in SOL (22%) than in EDL (8%). Similarly, during a prolonged tetanic contraction (30 s for SOL and 10 s for EDL), ISO-enhanced the force × time integral more in SOL (25%) than in EDL (3%). ISO induced marked activation of phosphorylase in both muscles in the basal state, which was associated with glycogenolysis (less in SOL than in EDL), and in EDL only, a significant decrease (16%) in inorganic phosphate (Pi). ATP turnover during sustained contractions (1 s EDL, 5 s SOL) was not affected by ISO in EDL, but essentially doubled in SOL. Under conditions of maximal stimulation, ISO has a minor effect on force generation in EDL that is associated with a decrease in Pi, whereas ISO has a marked effect on force generation in SOL that is associated with an increase in ATP turnover. Thus, phosphorylase functions as a phosphate trap in ISO-mediated force enhancement in EDL and as a catalyzer of ATP supply in SOL.

Keywords: Fatigue; Force; Isoproterenol; Metabolites; Muscle; Phosphorylase.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Scheme for Protocol 1. After setting optimal length (LO), EDL muscles equilibrated for 20 min, followed by baseline force frequency and a prolonged (continuous) contraction. Thereafter, ISO (or DMSO) was administered for 30 min before force frequency and continuous contraction was repeated. The scheme looks the same for soleus muscles with the exception that after setting Lo, equilibration was for 25 min
Fig. 2
Fig. 2
Isoproterenol enhances force generation of soleus and extensor digitorum longus muscles. Force frequency curves were performed at baseline (○, □) and 30 min post-treatment for control (●) and isoproterenol (■) groups in soleus (SOL) (a, b) and extensor digitorum longus (EDL) (cf), respectively. Forces are substantially higher than baseline in the presence of ISO in SOL (b). After baseline, a prolonged contraction was performed in each muscle (see Fig. 3), which caused a rundown effect in the EDL muscle with CON values significantly decreasing from baseline (c). Consequently, there were only minor increases in force in the presence of ISO (d). Force frequency curves were therefore performed in another series of EDL muscles without continuous contraction after baseline, CON (e) and ISO (f). In the latter case, forces are clearly higher than baseline in the presence of ISO (f). The corresponding average percentage effect of ISO on force is shown for SOL (g) and EDL (h) muscles. h is derived from results from d and f, with adjustments for rundown in d. Data are expressed as mean ± SE for 5 (ef), 8 (ad and g), or 13 (h) muscles. *p < 0.05; **p < 0.01; ***p < 0.001 vs. corresponding treatment by paired t test
Fig. 3
Fig. 3
Representative force recordings for soleus and extensor digitorum longus muscles during maximal stimulation frequencies. Forces are shown for a given muscle before (solid line) and after (dashed line) treatment. Soleus muscles were stimulated at 100 Hz before and after exposure to diluent (a) or ISO (b). Extensor digitorum longus (EDL) muscles were stimulated at 150 Hz before and after exposure to diluent (c) or ISO (d). Note that at these frequencies ISO enhanced force markedly more in soleus than in EDL
Fig. 4
Fig. 4
Isoproterenol enhances work output during prolonged contractions of soleus and extensor digitorum longus muscles. Prolonged tetanic contractions were performed for 30 s at a frequency of 100 Hz in SOL and 10 s at a frequency of 120 Hz in EDL. Representative traces are shown for baseline and 30 min post-treatment in CON and ISO groups as indicated for SOL (a, b) and EDL (d, e), respectively. Note that in a and d, baseline and CON curves are virtually identical, whereas in panel b the ISO curve is markedly higher throughout in comparison to baseline and in e the ISO curve is slightly higher initially vs. baseline. The effect of ISO on force × time integral was quantified by determining the area under the curve (AUC) of the continuous contractions in SOL (c) and EDL (f) muscles at baseline (B, unfilled bar) and 30 min post-treatment (CON and ISO, filled bars). Data are expressed as mean ± SE for eight muscles. *p < 0.05; ***p < 0.001 vs. corresponding baseline values by paired t test
Fig. 5
Fig. 5
Isoproterenol activates phosphorylase and inactivates glycogen synthase in soleus and extensor digitorum longus muscles. Phosphorylase (Phos) and glycogen synthase (GS) fractional activities were determined in soleus (SOL, a and c) and extensor digitorum longus muscles (EDL, b and d). Treatments consisted of basal control (BC), basal isoproterenol (BI), stimulated control (SC), and stimulated isoproterenol (SI) in the absence (−) or presence (+) of 3 mM sodium cyanide. SOL muscles were stimulated for 5 s at 100 Hz and EDL muscles for 1 s at 120 Hz. Data are expressed as mean ± SE for 5–7 muscles (numbers vary as sufficient extract was not always available). *p < 0.05; **p < 0.01; ***p < 0.001 vs. corresponding baseline values by paired t test

Similar articles

Cited by

References

    1. Allen D, Trajanovska S (2012) The multiple roles of phosphate in muscle fatigue. Front Physiol 3. 10.3389/fphys.2012.00463 - PMC - PubMed
    1. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88:287–332. doi: 10.1152/physrev.00015.2007. - DOI - PubMed
    1. Andersson DC, Betzenhauser MJ, Reiken S, Umanskaya A, Shiomi T, Marks AR. Stress-induced increase in skeletal muscle force requires protein kinase a phosphorylation of the ryanodine receptor. J Physiol. 2012;590:6381–6387. doi: 10.1113/jphysiol.2012.237925. - DOI - PMC - PubMed
    1. Barclay CJ. Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J Physiol. 1996;497(Pt 3):781–794. doi: 10.1113/jphysiol.1996.sp021809. - DOI - PMC - PubMed
    1. Barclay CJ. Modelling diffusive O2 supply to isolated preparations of mammalian skeletal and cardiac muscle. J Muscle Res Cell Motil. 2005;26:225–235. doi: 10.1007/s10974-005-9013-x. - DOI - PubMed

Publication types