Growing Nano-SiO2 on the Surface of Aramid Fibers Assisted by Supercritical CO2 to Enhance the Thermal Stability, Interfacial Shear Strength, and UV Resistance
- PMID: 31454877
- PMCID: PMC6780530
- DOI: 10.3390/polym11091397
Growing Nano-SiO2 on the Surface of Aramid Fibers Assisted by Supercritical CO2 to Enhance the Thermal Stability, Interfacial Shear Strength, and UV Resistance
Abstract
Aramid fibers (AFs) with their high Young's modulus and tenacity are easy to degrade seriously with ultraviolet (UV) radiation that leads to reduction in their performance, causing premature failure and limiting their outdoor end use. Herein, we report a method to synthesize nano-SiO2 on AFs surfaces in supercritical carbon dioxide (Sc-CO2) to simultaneously improve their UV resistance, thermal stability, and interfacial shear strength (IFSS). The effects of different pressures (10, 12, 14, 16 MPa) on the growth of nanoparticles were investigated. The untreated and modified fibers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It was found that the nano-SiO2-decorated fibers exhibited improvement of thermal stability and mechanical properties, and the IFSS of the nano-SiO2 modified fibers increases by up to 64% compared with the untreated fibers. After exposure to 216 h of UV radiation, the AFs-UV shows a less decrease in tensile strength, elongation to break and tensile modulus, retaining only 73%, 91%, and 85% of the pristine AFs, respectively, while those of AFs-SiO2-14MPa-UV retain 91.5%, 98%, and 95.5%. In short, this study presents a green method for growing nano-SiO2 on the surface of AFs by Sc-CO2 to enhance the thermal stability, IFSS, and UV resistance.
Keywords: UV resistance; aramid fiber; interfacial shear strength; nano-SiO2; supercritical CO2; thermal stability.
Conflict of interest statement
The authors declare no conflict of interest.
Figures












Similar articles
-
Improving UV Resistance of Aramid Fibers by Simultaneously Synthesizing TiO2 on Their Surfaces and in the Interfaces Between Fibrils/Microfibrils Using Supercritical Carbon Dioxide.Polymers (Basel). 2020 Jan 7;12(1):147. doi: 10.3390/polym12010147. Polymers (Basel). 2020. PMID: 31936033 Free PMC article.
-
Improving the Mechanical and Surface Properties of Aramid Fiber by Grafting with 1,4-Dichlorobutane under Supercritical Carbon Dioxide.Materials (Basel). 2019 Nov 16;12(22):3766. doi: 10.3390/ma12223766. Materials (Basel). 2019. PMID: 31744043 Free PMC article.
-
Construction of an Interfacial Layer of Aramid Fibers Grafted with Glycidyl POSS Assisted by Heat Treatment and Evaluation of Interfacial Adhesion Properties with Epoxy Resin.ACS Omega. 2024 May 29;9(23):24489-24499. doi: 10.1021/acsomega.4c00260. eCollection 2024 Jun 11. ACS Omega. 2024. PMID: 38882117 Free PMC article.
-
Study on Surface Properties of Aramid Fiber Modified in Supercritical Carbon Dioxide by Glycidyl-POSS.Polymers (Basel). 2019 Apr 17;11(4):700. doi: 10.3390/polym11040700. Polymers (Basel). 2019. PMID: 30999575 Free PMC article.
-
Enhanced Interfacial Strength and UV Shielding of Aramid Fiber Composites through ZnO Nanoparticle Sizing.ACS Appl Mater Interfaces. 2016 Dec 14;8(49):33963-33971. doi: 10.1021/acsami.6b07555. Epub 2016 Dec 1. ACS Appl Mater Interfaces. 2016. PMID: 27960369
Cited by
-
Thermal Behaviors, Interfacial Microstructure and Molecular Orientation of Shape Memory Polyurethane/SiO2 Based Sealant for Concrete Pavement.Polymers (Basel). 2022 Aug 16;14(16):3336. doi: 10.3390/polym14163336. Polymers (Basel). 2022. PMID: 36015597 Free PMC article.
-
Development, Testing, and Thermoforming of Thermoplastics Reinforced with Surface-Modified Aramid Fibers for Cover of Electronic Parts in Small Unmanned Aerial Vehicles Using 3D-Printed Molds.Polymers (Basel). 2024 Jul 27;16(15):2136. doi: 10.3390/polym16152136. Polymers (Basel). 2024. PMID: 39125163 Free PMC article.
-
Improving UV Resistance of Aramid Fibers by Simultaneously Synthesizing TiO2 on Their Surfaces and in the Interfaces Between Fibrils/Microfibrils Using Supercritical Carbon Dioxide.Polymers (Basel). 2020 Jan 7;12(1):147. doi: 10.3390/polym12010147. Polymers (Basel). 2020. PMID: 31936033 Free PMC article.
-
Supercritical CO2 Assisted TiO2 Preparation to Improve the UV Resistance Properties of Cotton Fiber.Polymers (Basel). 2022 Dec 16;14(24):5513. doi: 10.3390/polym14245513. Polymers (Basel). 2022. PMID: 36559881 Free PMC article.
-
Effect of Nano-SiO2 Modification on Mechanical and Insulation Properties of Basalt Fiber Reinforced Composites.Polymers (Basel). 2022 Aug 17;14(16):3353. doi: 10.3390/polym14163353. Polymers (Basel). 2022. PMID: 36015610 Free PMC article.
References
-
- Cao K., Siepermann C.P., Ming Y., Waas A.M., Arruda E.M. Reactive Aramid Nanostructures as High-Performance Polymeric Building Blocks for Advanced Composites. Adv. Funct. Mater. 2013;23:2072–2080. doi: 10.1002/adfm.201202466. - DOI
-
- Mukherjee M., Das C., Kharitonov A., Banik K., Mennig G., Chung T. Properties of syndiotactic polystyrene composites with surface modified short Kevlar fiber. Mater. Sci. Eng. A. 2006;441:206–214. doi: 10.1016/j.msea.2006.08.004. - DOI
-
- Wang F., Wu Y., Huang Y., Liu L. Strong, transparent and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes. Compos. Sci. Technol. 2018;156:269–275. doi: 10.1016/j.compscitech.2018.01.016. - DOI
-
- Taraghi I., Fereidoon A., Taheri-Behrooz F. Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures. Mater. Des. 2014;53:152–158. doi: 10.1016/j.matdes.2013.06.051. - DOI
-
- Lee J.U., Park B., Kim B.S., Bae D.R., Lee W. Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content. Compos. Part A Appl. Sci. Manuf. 2016;84:482–489. doi: 10.1016/j.compositesa.2016.02.029. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources