Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 1;2(6):2405-2414.
doi: 10.1021/acsomega.7b00236. eCollection 2017 Jun 30.

N-Geminal P/Al Lewis Pair-Alkyne Dipolar Cycloaddition to the Zwitterionic C2PNAl-Heterocyclopentene

Affiliations

N-Geminal P/Al Lewis Pair-Alkyne Dipolar Cycloaddition to the Zwitterionic C2PNAl-Heterocyclopentene

Shuang Ding et al. ACS Omega. .

Abstract

The N-geminal P/Al Lewis pair [Ph2PN(2,6-iPr2C6H3)AlEt2]2 (1) has been prepared and studied for reaction with a series of alkynes. The reaction of 1 with RC≡CR yielded zwitterionic C2PNAl-heterocyclopentene [Ph2 PN(2,6-iPr2C6H3)AlEt2](CR=CR) (R = Me (2), Ph (3)); with PhC≡CEt produced two isomers, [Ph2 PN(2,6-iPr2C6H3)AlEt2](CPh=CEt) (4a) and [Ph2 PN(2,6-iPr2C6H3)AlEt2](CEt=CPh) (4b); and with other alkynes generated [Ph2 PN(2,6-iPr2C6H3)AlEt2](CR1=CR2) (R1, R2 = CO2Et, Ph (5); SiMe3, Ph (6); PPh2, Ph (7); SiMe3,H (8); H, EtO (9)). Natural bond orbital analysis of the charge separation of the C≡C bond of alkynes was carried out, and then, the electronic matching interaction mode between the combined Lewis acid (AlEt2) and base (PPh2) groups of 1 and the C≡C bond of such alkynes was discussed. Reactions of 1 with alkene, nitrile, and carbodiimide molecules were also carried out, and cycloaddition compounds 10-12 were produced.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Reported Zwitterionic Heterocycloalkenes Formed by (F)LP–alkyne Cycloadditions
Scheme 2
Scheme 2. Synthesis of N-Geminal P/Al LP
Figure 1
Figure 1
X-ray crystal structure of 1. The carbon atoms of the aryl groups at both the P and N atoms are drawn with thermal ellipsoids at a 10% probability level for clarity and the other atoms, at a 50% probability level. Selected bond lengths (Å) and angles (°): N(1)–P(1), 1.674(2); P(1)–Al(2), 2.545(1); Al(2)–N(2), 1.903(2); N(2)–P(2), 1.670(2); P(2)–Al(1), 2.563(1); Al(1)–N(1), 1.893(2); P(1)–N(1)–Al(1), 122.87(11); P(2)–N(2)–Al(2), 122.09(11); N(1)–Al(1)–P(2), 106.19(7); N(2)–Al(2)–P(1), 106.47(7).
Scheme 3
Scheme 3. Dipolar Cycloaddition Reactions of 1 with Internal Alkynes to Zwitterionic C2PNAl-Heterocyclopentenes 27
Scheme 4
Scheme 4. Dipolar Cycloaddition Reactions of 1 with Terminal Alkynes To Form Zwitterionic C2PNAl-Heterocyclopentenes 8 and 9
Figure 2
Figure 2
X-ray crystal structure of 2 with thermal ellipsoids at a 50% probability level. Selected bond lengths (Å) and angles (°): P(1)–N(1), 1.626(2); N(1)–Al(1), 1.956(2); Al(1)–C(2), 2.007(2); C(2)–C(3), 1.345(3); C(3)–P(1), 1.786(2); Al(1)–N(1)–P(1), 112.23(8); N(1)–P(1)–C(3), 106.28(8); P(1)–C(3)–C(2), 114.16(14); C(3)–C(2)–Al(1), 116.61(14); C(2)–Al(1)–N(1), 90.46(7).
Figure 3
Figure 3
X-ray crystal structure of 4a with thermal ellipsoids at a 50% probability level. Selected bond lengths (Å) and angles (°): N(1)–P(1), 1.623(1); P(1)–C(2), 1.788(2); C(2)–C(1), 1.349(2); C(1)–Al(1), 2.024(2); Al(1)–N(1), 1.960(1); Al(1)–N(1)–P(1), 111.69(7); N(1)–P(1)–C(2), 106.23(7); P(1)–C(2)–C(1), 113.64(12); C(2)–C(1)–Al(1), 116.38(12); C(1)–Al(1)–N(1), 89.85(6).
Figure 4
Figure 4
X-ray crystal structure of 6 with thermal ellipsoids at a 50% probability level. Selected bond lengths (Å) and angles (°): N(1)–P(1), 1.623(2); P(1)–C(2), 1.819(2); C(2)–C(1), 1.350(3); C(1)–Al(1), 2.017(2); N(1)–Al(1), 1.952(2); Al(1)–N(1)–P(1), 112.48(8); N(1)–P(1)–C(2), 104.59(8); P(1)–C(2)–C(1), 114.67(13); C(2)–C(1)–Al(1), 115.31(13); C(1)–Al(1)–N(1), 90.78(7).
Figure 5
Figure 5
X-ray crystal structure of 8 with thermal ellipsoids at a 50% probability level. Selected bond lengths (Å) and angles (°) (the value in brackets is for another independent molecule): N(1)–P(1), 1.619(2) [1.622(2)]; P(1)–C(1), 1.783(2) [1.781(2)]; C(1)–C(2), 1.348(3) [1.343(3)]; C(2)–Al(1), 2.018(2) [2.019(3)]; Al(1)–N(1), 1.959(2) [1.966(2)]; P(1)–N(1)–Al(1), 112.54(10) [112.02(10)]; N(1)–P(1)–C(1), 104.03(10) [104.23(10)]; C(2)–C(1)–P(1), 117.47(18) [117.60(18)]; C(1)–C(2)–Al(1), 113.25(16) [113.36(16)]; N(1)–Al(1)–C(2), 90.94(9) [90.85(9)].
Scheme 5
Scheme 5. Dipolar Cycloaddition Reactions of 1 with an Alkene, Nitrile, and Carbodiimide To Form Zwitteric Heterocycles 1012
Figure 6
Figure 6
X-ray crystal structure of 10 with thermal ellipsoids at a 50% probability level. Selected bond lengths (Å) and angles (°): P(1)–N(1), 1.624(2); P(1)–C(2), 1.834(2); C(2)–C(1), 1.551(3); C(1)–Al(1), 2.019(2); Al(1)–N(1), 1.972(2); Al(1)–N(1)–P(1), 112.61(9); N(1)–P(1)–C(2), 103.97(8); P(1)–C(2)–C(1), 106.19(13); C(2)–C(1)–Al(1), 108.25(12); C(1)–Al(1)–N(1), 91.86(7).
Figure 7
Figure 7
X-ray crystal structure of 11 with thermal ellipsoids at a 50% probability level. Selected bond lengths (Å) and angles (°): N(2)–P(1), 1.625(2); P(1)–C(1), 1.891(3); C(1)–N(1), 1.244(4); N(1)–Al(1), 1.905(2); Al(1)–N(2), 1.944(2); Al(1)–N(2)–P(1), 113.19(12); N(2)–P(1)–C(1), 100.04(11); P(1)–C(1)–N(1), 115.0(2); C(1)–N(1)–Al(1), 119.62(18); N(1)–Al(1)–N(2), 91.04(9).
Figure 8
Figure 8
X-ray crystal structure of 12 with thermal ellipsoids at a 50% probability level. Selected bond lengths (Å) and angles (°): N(3)–P(1), 1.623(2); P(1)–C(1), 1.862(2); C(1)–N(1), 1.369(2); N(1)–Al(1), 1.895(2); Al(1)–N(3), 1.941(2); C(1)–N(2), 1.279(3); Al(1)–N(3)–P(1), 112.65(9); N(3)–P(1)–C(1), 104.30(8); P(1)–C(1)–N(1), 108.99(14); C(1)–N(1)–Al(1), 121.54(12); N(1)–Al(1)–N(3), 90.65(7).

Similar articles

References

    1. Stephan D. W.; Erker G. Angew. Chem., Int. Ed. 2010, 49, 46–76. 10.1002/anie.200903708. - DOI - PubMed
    2. Melen R. L. Chem. Commun. 2014, 50, 1161–1174. 10.1039/C3CC48036D. - DOI - PubMed
    3. Stephan D. W.; Erker G. Angew. Chem., Int. Ed. 2015, 54, 6400–6441. 10.1002/anie.201409800. - DOI - PubMed
    4. Stephan D. W. J. Am. Chem. Soc. 2015, 137, 10018–10032. 10.1021/jacs.5b06794. - DOI - PubMed
    1. See selected articles

    2. Dureen M. A.; Stephan D. W. J. Am. Chem. Soc. 2009, 131, 8396–8397. 10.1021/ja903650w. - DOI - PubMed
    3. Dureen M. A.; Brown C. C.; Stephan D. W. Organometallics 2010, 29, 6594–6607. 10.1021/om1009044. - DOI
    4. Liedtke R.; Froehlich R.; Kehr G.; Erker G. Organometallics 2011, 30, 5222–5232. 10.1021/om200615n. - DOI
    5. Rosorius C.; Daniliuc C. G.; Froehlich R.; Kehr G.; Erker G. J. Organomet. Chem. 2013, 744, 149–155. 10.1016/j.jorganchem.2013.06.005. - DOI
    6. Liedtke R.; Scheidt F.; Ren J.; Schirmer B.; Cardenas A. J. P.; Daniliuc C. G.; Eckert H.; Warren T. H.; Grimme S.; Kehr G.; Erker G. J. Am. Chem. Soc. 2014, 136, 9014–9027. 10.1021/ja5028293. - DOI - PubMed
    7. Eller C.; Bussmann K.; Kehr G.; Wibbeling B.; Daniliuc C. G.; Erker G. Chem. Commun. 2014, 50, 1980–1982. 10.1039/c3cc47769j. - DOI - PubMed
    1. See selected articles

    2. Kolb H. C.; Finn M. G.; Sharpless K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021. 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. - DOI - PubMed
    3. Angell Y. L.; Burgess K. Chem. Soc. Rev. 2007, 36, 1674–1689. 10.1039/b701444a. - DOI - PubMed
    4. Díez-González S.; Nolan S. P. Angew. Chem., Int. Ed. 2008, 47, 8881–8884. 10.1002/anie.200803289. - DOI - PubMed
    5. Liang L.; Astruc D. Coord. Chem. Rev. 2011, 255, 2933–2945. 10.1016/j.ccr.2011.06.028. - DOI
    1. Stirling A.; Hamza A.; Rokob T. A.; Pápai I. Chem. Commun. 2008, 3148–3150. 10.1039/b804662j. - DOI - PubMed
    2. Guo Y.; Li S. Eur. J. Inorg. Chem. 2008, 2008, 2501–2505. 10.1002/ejic.200800281. - DOI
    1. Freitag S.; Krebs K. M.; Henning J.; Hirdler J.; Schubert H.; Wesemann L. Organometallics 2013, 32, 6785–6791. 10.1021/om400736e. - DOI