Reactions of Piperazin-2-one, Morpholin-3-one, and Thiomorpholin-3-one with Triethyl Phosphite Prompted by Phosphoryl Chloride: Scope and Limitations
- PMID: 31459993
- PMCID: PMC6648091
- DOI: 10.1021/acsomega.9b01137
Reactions of Piperazin-2-one, Morpholin-3-one, and Thiomorpholin-3-one with Triethyl Phosphite Prompted by Phosphoryl Chloride: Scope and Limitations
Abstract
The reaction of the title lactams with triethyl phosphite prompted by phosphoryl chloride provided six-membered ring heterocyclic phosphonates or bisphosphonates. These novel scaffolds might be of interest as building blocks in medicinal chemistry. The course of the reaction was dependent on the structure of the used substrate. Thus, morpholin-3-one and thiomorpholin-3-one readily provided the corresponding 1,1-bisphosphonates (compounds 1, 2, 7, 14 and 16), whereas the protection of their nitrogen atom resulted in the formation of dehydrophosphonates (compounds 5, 6, and 8). Piperazin-2-one reacted differently yielding mixture of cis- and trans- piperazine-2,3-diyl-bisphosphonates (compounds 10 and 11). Since cytosine could be considered as an analogue of piperin-2-one, its ditosyl derivative 18 was used as a substrate affording compound 19 being a product of phosphite addition to double bond. In dependence of their structures, hydrolysis of the obtained diethyl phosphonates resulted either in corresponding cyclic phosphonic acids or in the degradation of carbon-to-phosphorus bond.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Taylor A. P.; Robinson R. P.; Fobian Y. M.; Blakemore D. C.; Jones L. H.; Olugbeminiyi F. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 2016, 14, 6611–6637. 10.1039/C6OB00936K. - DOI - PubMed
- Taylor R.; MacCoss M.; Lawson A. D. G. Rings in drugs: Miniperspective. J. Med. Chem. 2014, 57, 5845–5859. 10.1021/jm4017625. - DOI - PubMed
-
- Moonen K.; Laureyn I.; Stevens C. V. Synthetic methods for azaheterocyclic phosphonates and their biological activity. Chem. Rev. 2004, 104, 6177–6215. 10.1021/cr030451c. - DOI - PubMed
- Ramírez-Marroquín O.; Romero-Estudillo I.; Viveros-Ceballos J. L.; Cativiela C.; Ordóñez M. Convenient synthesis of cyclic α-aminophosphonates by alkylation–cyclization reaction of iminophosphoglycinates using phase-transfer catalysis. Eur. J. Org. Chem. 2016, 308–313. 10.1002/ejoc.201501203. - DOI
- Kaczmarek P.; Rapp M.; Koroniak H. Pyrrolidine and oxazolidine ring transformations in proline and serine derivatives of ahydroxyphosphonates induced by deoxyfluorinating reagents. RSC Adv. 2018, 8, 24444–24457. 10.1039/C8RA05186K. - DOI - PMC - PubMed
- Ordóñez M.; Arizpe A.; Sayago S. J.; Jiménez A. I.; Cativiela C. Practical and efficient synthesis of α-aminophosphonic acids containing 1,2,3,4-tetrahydroquinoline or 1,2,3,4-tetrahydroisoquinoline heterocycles. Molecules 2016, 21, 1140 10.3390/molecules21091140. - DOI - PMC - PubMed
- Viveros-Ceballos J. L.; Martínez-Toto E. I.; Eustaquio-Armenta C.; Cativiela C.; Ordóñez M. First and highly stereoselective synthesis of both enantiomers of octahydroindole-2-phosphonic acid (OicP). Eur. J. Org. Chem. 2017, 6781–6787. 10.1002/ejoc.201701330. - DOI
- Wuggenig F.; Schweifer A.; Mereiter K.; Hammerschmidt F. Chemoenzymatic synthesis of phosphonic acid analogues of L-lysine, L-proline, L-ornithine, and o-pipecolic acid of 99% ee—assignment of absolute configuration to (−)-proline. Eur. J. Org. Chem. 2011, 1870–1879. 10.1002/ejoc.201001501. - DOI
- Dziuganowska Z. A.; Ślepokura A.; Volle J.-N.; Virieux D.; Pirat J.-L.; Kafarski P. Structural analogues of Selfotel. J. Org. Chem. 2016, 81, 4947–4954. 10.1021/acs.joc.6b00220. - DOI - PubMed
- Chmielewska E.; Miszczyk P.; Kozłowska J.; Prokopowicz M.; Młynarz P.; Kafarski P. Reaction of benzolactams with triethyl phosphite prompted by phosphoryl chloride affords benzoannulated monophosphonates instead of expected bisphoshonates. J. Organomet. Chem. 2015, 785, 84–91. 10.1016/j.jorganchem.2015.03.005. - DOI
- Iwanejko J.; Brol A.; Szyja B.; Daszkiewicz M.; Wojeczyńska E.; Olszewski T. K. Hydrophosphonylation of chiral hexahydroquinoxalin-2(1H)-one derivatives as an effective route to new bicyclic compounds: Aminophosphonates, enamines and imines. Tetrahedron 2019, 75, 1431–1439. 10.1016/j.tet.2019.01.062. - DOI
-
- Bonilla-Landa I.; Viveros-Ceballos J. L.; Ordóñez M. Diastereoselective synthesis of novel 5-substituted morpholine-3-phosphonic acids: further exploitation of N-acyliminium intermediates. Tetrahedron: Asymmetry 2014, 25, 485–487. 10.1016/j.tetasy.2014.02.014. - DOI
- Qian R.; Kalina T.; Horak J.; Gilberti S.; Forlani G.; Hammerschmidt F. Preparation of phosphonic acid analogues of proline and prolinę analogues and their biological evaluation as δ1-pyrroline-5- carboxylate reductase inhibitors. ACS Omega 2018, 3, 441–4452. 10.1021/acsomega.8b00354. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
