Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 26;4(7):12719-12726.
doi: 10.1021/acsomega.9b01364. eCollection 2019 Jul 31.

Reactivity Modes of Cp*M-Type Half-Sandwich Dichalcogenolate Complexes with 2,6-Disubstituted Aryl Azides: The Effects of the Metal Center, Chalcogen, and Ligand Moiety on Product Formation

Affiliations

Reactivity Modes of Cp*M-Type Half-Sandwich Dichalcogenolate Complexes with 2,6-Disubstituted Aryl Azides: The Effects of the Metal Center, Chalcogen, and Ligand Moiety on Product Formation

Wei Zhong et al. ACS Omega. .

Abstract

Cp*M-type half-sandwich dichalcogenolate complexes bearing either carborane or benzene moieties show diverse reactivity patterns toward two selected 2,6-disubstituted aryl azides under thermal or photolytic conditions. The chalcogen (S and Se) has little effect on the formation of final products. However, the effects of both the metal center and the ligand moiety of the metal precursor on the reactions were significant. Compared to iridium precursor Cp*IrS2C2B10H10 (1a), rhodium and cobalt analogues (1b: Cp*RhS2C2B10H10, 1c: Cp*CoS2C2B10H10) demonstrated no reactivity toward aryl azides. The reaction of Cp*IrSe2C2B10H10 (1d) with 2,6-Me2C6H3N3 led to the clean formation of complex 2 with C(sp3)-H activation of one methyl group of the Cp* ligand and loss of N2 along with the rearrangement of the benzene ring of the original azide ligand, whereas the treatment of Cp*IrS2C6H4 (1e) with 2,6-Me2C6H3N3 under the same reaction conditions gave a 16-electron half-sandwich complex 5 featuring C-N coupling on one methyl group from the Cp* ligand. When 2-Me-6-NO2C6H3N3 was employed, the same reaction patterns for forming products (3 and 6) with the nitro group migrating to the para-position versus the original aryl azide were observed. In addition, the reaction with metal precursor 1d generated another product 4 featuring the exchange of nitro and azido groups, while the reaction with 1e afforded another complex 7 with the formation of the N-NO2 moiety. All new complexes were characterized by spectroscopy methods, and single-crystal X-ray analyses were performed for complexes 2 and 5-7. Furthermore, radical mechanisms for the formation of complexes 2-7 were proposed.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Synthesis of Complexes I–III and Metal Effect on the Reaction
Figure 1
Figure 1
Molecular structures of 2 (left) and 5 (right) with 30% displacement ellipsoids (all H atoms are omitted for clarity). Selected bond lengths (Å) and angles (°) for 2: Ir1–N1 2.050(5), Ir1–Se1 2.4639(7), Ir1–Se2 2.4764(7), Se1–C1 1.943(5), Se2–C2 1.943(5), C2–C1 1.645(7), N1–C18 1.286(7), C12–C13 1.555(8), C13–C18 1.521(8); N1–Ir1–Se1 89.30(13), N1–Ir1–Se2 84.19(13), Se1–Ir1–Se2 90.57(2), C18–N1–Ir1 132.6(4), N1–C18–C13 120.5(5), C7–C12–C13 121.0(4), C18–C13–C12 117.0(5). For 5: Ir1–S1 2.236(2), Ir1–S2 2.243(2), C1–C2 1.384(12), C1–S1 1.759(9), C2–S2 1.760(9), C16–N1 1.502(11), C17–N1 1.421(11); S1–Ir1–S2 88.22(8), C2–C1–S1 120.0(7), C1–C2–S2 119.0(7), C17–N1–C16 113.9(7).
Scheme 2
Scheme 2. Synthesis of Complexes 2–4
Scheme 3
Scheme 3. Synthesis of Complexes 5–7
Figure 2
Figure 2
Molecular structures of 6 (left) and 7 (right) with 30% displacement ellipsoids (all H atoms are omitted for clarity). Selected bond lengths (Å) and angles (°) for 6: Ir1–S1 2.343(3), Ir1–S2 2.304(3), Ir1–N1 2.061(8), C1–S1 1.751(12), C2–S2 1.785(11), C1–C2 1.370(16), S2–C18 1.784(11), N1–C17 1.306(14), C17–C18 1.437(15); N1–Ir1–S1 88.8(3), N1–Ir1–S2 81.7(3), S2–Ir1–S1 87.86(10), C1–S1–Ir1 104.1(4), C2–S2–Ir1 104.6(4), C18–S2–Ir1 99.5(4), C17–N1–Ir1 122.2(8). For 7: Ir1–S1 2.3547(9), Ir1–S2 2.3112(8), Ir1–N1 2.114(3), C1–S1 1.756(3), C2–S2 1.786(3), C1–C2 1.391(5), S2–C18 1.792(3), N1–C17 1.416(4), C17–C18 1.396(5); N1–Ir1–S2 80.99(8), N1–Ir1–S1 87.54(8), S2–Ir1–S1 87.43(3), C1–S1–Ir1 104.18(11), C2–S2–Ir1 105.97(12), C18–S2–Ir1 99.13(11), C17–N1–Ir1 117.5(2).
Scheme 4
Scheme 4. Proposed Reaction Pathways for the Formation of 2–7

Similar articles

References

    1. Bräse S.; Gil C.; Knepper K.; Zimmermann V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem., Int. Ed. 2005, 44, 5188–5240. 10.1002/anie.200400657. - DOI - PubMed
    2. Huang D.; Yan G. Recent Advances in Reactions of Azides. Adv. Synth. Catal. 2017, 359, 1600–1619. 10.1002/adsc.201700103. - DOI
    1. Intrieri D.; Zardi P.; Caselli A.; Gallo E. Organic azides: “energetic reagents” for the intermolecular amination of C–H bonds. Chem. Commun. 2014, 50, 11440–11453. 10.1039/c4cc03016h. - DOI - PubMed
    2. Shin K.; Kim H.; Chang S. Transition-Metal-Catalyzed C-N Bond Forming Reactions Using Organic Azides as the Nitrogen Source: A Journey for the Mild and Versatile C-H Amination. Acc. Chem. Res. 2015, 48, 1040–1052. 10.1021/acs.accounts.5b00020. - DOI - PubMed
    3. Driver T. G. Recent advances in transition metal-catalyzed N-atom transfer reactions of azides. Org. Biomol. Chem. 2010, 8, 3831–3846. 10.1039/c005219c. - DOI - PMC - PubMed
    1. Cenini S.; La Monica G. Organic azides and isocyanates as sources of nitrene species in organometallic chemistry. Inorg. Chim. Acta 1976, 18, 279–293. 10.1016/s0020-1693(00)95618-4. - DOI
    2. Cenini S.; Gallo E.; Caselli A.; Ragaini F.; Fantauzzi S.; Piangiolino C. Coordination chemistry of organic azides and amination reactions catalyzed by transition metal complexes. Coord. Chem. Rev. 2006, 250, 1234–1253. 10.1016/j.ccr.2005.10.002. - DOI
    1. Jenkins D. M.; Betley T. A.; Peters J. C. Oxidative Group Transfer to Co(I) Affords a Terminal Co(III) Imido Complex. J. Am. Chem. Soc. 2002, 124, 11238–11239. 10.1021/ja026852b. - DOI - PubMed
    2. Laskowski C. A.; Miller A. J. M.; Hillhouse G. L.; Cundari T. R. A Two-Coordinate Nickel Imido Complex That Effects C–H Amination. J. Am. Chem. Soc. 2011, 133, 771–773. 10.1021/ja1101213. - DOI - PubMed
    3. Hu X.; Meyer K. Terminal Cobalt(III) Imido Complexes Supported by Tris(Carbene) Ligands: Imido Insertion into the Cobalt–Carbene Bond. J. Am. Chem. Soc. 2004, 126, 16322–16323. 10.1021/ja044271b. - DOI - PubMed
    4. Waterman R.; Hillhouse G. L. η2-Organoazide Complexes of Nickel and Their Conversion to Terminal Imido Complexes via Dinitrogen Extrusion. J. Am. Chem. Soc. 2008, 130, 12628–12629. 10.1021/ja805530z. - DOI - PubMed
    5. Harrold N. D.; Waterman R.; Hillhouse G. L.; Cundari T. R. Group-Transfer Reactions of Nickel–Carbene and −Nitrene Complexes with Organoazides and Nitrous Oxide that Form New C=N, C=O, and N=N Bonds. J. Am. Chem. Soc. 2009, 131, 12872–12873. 10.1021/ja904370h. - DOI - PubMed
    6. Iluc V. M.; Miller A. J. M.; Anderson J. S.; Monreal M. J.; Mehn M. P.; Hillhouse G. L. Synthesis and Characterization of Three-Coordinate Ni(III)-Imide Complexes. J. Am. Chem. Soc. 2011, 133, 13055–13063. 10.1021/ja2024993. - DOI - PMC - PubMed
    7. Wu H.; Hall M. B. A New Mechanism for the Conversion of Transition Metal Azides to Imido Complexes. J. Am. Chem. Soc. 2008, 130, 16452–16453. 10.1021/ja805105q. - DOI - PubMed
    8. Travia N. E.; Xu Z.; Keith J. M.; Ison E. A.; Fanwick P. E.; Hall M. B.; Abu-Omar M. M. Observation of Inductive Effects That Cause a Change in the Rate-Determining Step for the Conversion of Rhenium Azides to Imido Complexes. Inorg. Chem. 2011, 50, 10505–10514. 10.1021/ic2017853. - DOI - PubMed
    9. Geer A. M.; Tejel C.; López J. A.; Ciriano M. A. Terminal Imido Rhodium Complexes. Angew. Chem., Int. Ed. 2014, 53, 5614–5618. 10.1002/anie.201400023. - DOI - PubMed
    10. Bellow J. A.; Yousif M.; Cabelof A. C.; Lord R. L.; Groysman S. Reactivity Modes of an Iron Bis(alkoxide) Complex with Aryl Azides: Catalytic Nitrene Coupling vs Formation of Iron(III) Imido Dimers. Organometallics 2015, 34, 2917–2923. 10.1021/acs.organomet.5b00231. - DOI
    11. Liu Y.; Du J.; Deng L. Synthesis, Structure, and Reactivity of Low-Spin Cobalt(II) Imido Complexes [(Me3P)3Co(NAr)]. Inorg. Chem. 2017, 56, 8278–8286. 10.1021/acs.inorgchem.7b00941. - DOI - PubMed
    1. Brown S. D.; Betley T. A.; Peters J. C. A Low-Spin d5 Iron Imide: Nitrene Capture by Low-Coordinate Iron(I) Provides the 4-Coordinate Fe(III) Complex [PhB(CH2PPh2)3]Fe⋮N-p-tolyl. J. Am. Chem. Soc. 2003, 125, 322–323. 10.1021/ja028448i. - DOI - PubMed
    2. Guillemot G.; Solari E.; Floriani C.; Rizzoli C. Nitrogen-to-Metal Multiple Bond Functionalities: The Reaction of Calix[4]arene–W(IV) with Azides and Diazoalkanes. Organometallics 2001, 20, 607–615. 10.1021/om000612s. - DOI
    3. Manßen M.; Weimer I.; Adler C.; Fischer M.; Schmidtmann M.; Beckhaus R. From Organic Azides through Titanium Triazenido Complexes to Titanium Imides. Eur. J. Inorg. Chem. 2018, 131–136. 10.1002/ejic.201701273. - DOI
    4. Harman W. H.; Lichterman M. F.; Piro N. A.; Chang C. J. Well-Defined Vanadium Organoazide Complexes and Their Conversion to Terminal Vanadium Imides: Structural Snapshots and Evidence for a Nitrene Capture Mechanism. Inorg. Chem. 2012, 51, 10037–10042. 10.1021/ic301673g. - DOI - PubMed